若角α滿足α=
2kπ
3
+
π
6
(k∈Z),則α的終邊一定在( 。
A、第一象限或第二象限或第三象限
B、第一象限或第二象限或第四象限
C、第一象限或第二象限或x軸非負(fù)半軸上
D、第一象限或第二象限或y軸非正半軸上
考點(diǎn):象限角、軸線角
專題:三角函數(shù)的求值
分析:直接分當(dāng)k=3n,(n∈Z)時(shí),當(dāng)k=3n+1,(n∈Z)時(shí),當(dāng)k=3n+2,(n∈Z)時(shí)三種情況得答案.
解答: 解:α=
2kπ
3
+
π
6
(k∈Z),
當(dāng)k=3n,(n∈Z)時(shí),α=2nπ+
π
6
,為第一象限角;
當(dāng)k=3n+1,(n∈Z)時(shí),α=2nπ+
6
,為第二象限角;
當(dāng)k=3n+2,(n∈Z)時(shí),α=2nπ+
2
,為y軸非正半軸上的角.
則α的終邊一定在第一象限或第二象限或y軸非正半軸上.
故選:D.
點(diǎn)評(píng):本題考查了象限角和軸線角,是基礎(chǔ)的概念題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+2|+1,g(x)=ax.若關(guān)于x的方程f(x)=g(x)有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A、(-1,-
1
2
B、(
1
2
,1)
C、(0,
1
2
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,若函數(shù)y=ex+ax,x∈R,有大于-1的極值點(diǎn),則( 。
A、a<-1
B、a>-1
C、a<-
1
e
D、a>-
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分條件
C、命題“若x=y,則sinx≠siny”的逆否命題為假命題
D、命題“若x2+y2≠0,則x、y不全為零”的否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知25cos2A+120sin2
B+C
2
=17.
(1)求cosA的值;
(2)若a=4
2
,b=5,求向量
BA
BC
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
b
的夾角為60°,則|
a
+
b
|的值為( 。
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx2-mx-1.
(1)若對(duì)于x∈R,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)于x∈[1,3],f(x)<5-m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三數(shù)學(xué)競(jìng)賽初賽考試后,對(duì)考生的成績(jī)進(jìn)行統(tǒng)計(jì)(考生成績(jī)均不低于90分,滿分為150分),將成績(jī)按如下方式分成六組,第一組[90,100)、第二組[100,110)…,第六組[140,150],如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(Ⅰ)求第四和第五組頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)若不低于120分的同學(xué)進(jìn)入決賽,不低于140分的同學(xué)為種子選手,完成下面2×2列聯(lián)表(即填寫空格處的數(shù)據(jù)),并判斷是否有99%的把握認(rèn)為“進(jìn)入決賽的同學(xué)成為種子選手與專家培訓(xùn)有關(guān)”.
[120,140)[140,150]合計(jì)
參加培訓(xùn)88
未參加培訓(xùn)
合計(jì)4
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.250.150.100.050.0250.0100.0050.001
K01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}中,a3=12,a4=8
(Ⅰ)求首項(xiàng)a1和公比q;
(Ⅱ)求數(shù)列{an}的前8項(xiàng)和S8

查看答案和解析>>

同步練習(xí)冊(cè)答案