在空間直角坐標(biāo)系O-xyz中,點(diǎn)(-2,0,4)關(guān)于y軸的對(duì)稱點(diǎn)是( 。
A、(-2,0,-4)
B、(2,0,-4)
C、(4,0,-2)
D、(2,0,4)
考點(diǎn):空間中的點(diǎn)的坐標(biāo)
專題:空間位置關(guān)系與距離
分析:在空間直角坐標(biāo)系中,點(diǎn)(-2,0,4)關(guān)于y軸對(duì)稱就是把x變?yōu)?x,z變?yōu)?z,y不變,從而求解;
解答: 解:∵在空間直角坐標(biāo)系中,點(diǎn)(-2,0,4)關(guān)于y軸對(duì)稱,把x變?yōu)?x,z變?yōu)?z,y不變,
∴其對(duì)稱點(diǎn)為:(2,0,-4).
故選:B.
點(diǎn)評(píng):本題主要考查空間直角坐標(biāo)系,點(diǎn)的對(duì)稱問(wèn)題,點(diǎn)(x,y,z)關(guān)于y軸對(duì)稱為(-x,y,-z),此題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P的坐標(biāo)為(1,2),
AB
=(1,2)
,則(  )
A、點(diǎn)P與點(diǎn)A重合
B、點(diǎn)P與點(diǎn)B重合
C、點(diǎn)P就表示
AB
D、
OP
=
AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C1:x2+y2+2x+8y-8=0與圓C2:x2+y2-4x+4y-1=0的位置關(guān)系是( 。
A、相離B、外切C、內(nèi)切D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|1≤x≤4},B=Z為整數(shù)集,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)=x2-2x則有( 。
A、f(3)<f(2)<f(4)
B、f(2)<f(3)<f(4)
C、f(2)<f(4)<f(3)
D、f(4)<f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=1,公差d≠0且a3,a4,a6依次是一個(gè)等比數(shù)列的前三項(xiàng),則這個(gè)等比數(shù)列的第四項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={0,1,2,3},B={1,3,5},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={a,b},則A的所有子集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線E:
x2
a2
-
y2
4
=1(a>0)的中心為原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,離心率為
3
5
5
,點(diǎn)P是直線x=
a2
3
上任意一點(diǎn),點(diǎn)Q在雙曲線E上,且滿足
PF2
QF2
=0.
(1)求實(shí)數(shù)a的值;
(2)證明:直線PQ與直線OQ的斜率之積是定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案