【題目】在直三棱柱ABC﹣A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1 , BC的中點.
(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設P是BE的中點,求三棱錐P﹣B1C1F的體積.
【答案】
(1)證明:在△ABC中,∵AC=2BC=4,∠ACB=60°,
∴ ,
∴AB2+BC2=AC2,
∴AB⊥BC.
由已知AB⊥BB1,
∴AB⊥面BB1C1C,
又∵AB面ABE,
故ABE⊥面BB1C1C.
(2)證明:取AC的中點M,連接C1M,F(xiàn)M,在△ABC中,F(xiàn)M∥AB,∴直線FM∥面ABE.
在矩形ACC1A1中,E、M都是中點,∴C1M∥AE,∴直線C1M∥面ABE,
又∵C1M∩FM=M,∴面ABE∥面FMC1,故C1F∥面AEB.
(3)解:在棱AC上取中點G,連接EG、BG,在BG上取中點O,
連接PO,則PO∥BB1,∴點P到面BB1C1C的距離等于點O到平面BB1C1C的距離.
過O作OH∥AB交BC與H,則OH⊥平面BB1C1C,在等邊△BCG中,可知CO⊥BG,
∴BO=1,在Rt△BOC中,可得 ,∴ .
【解析】(1)用勾股定理證明AB⊥BC,由直棱錐的性質可得 AB⊥BB1 , 證明AB⊥面BB1C1C,從而得到ABE⊥面BB1C1C.(2)取AC的中點M,由FM∥面ABE,C1M∥面ABE,從而面ABE∥面FMC1 , 得到C1F∥面AEB.(3)在棱AC上取中點G,在BG上取中點O,則PO∥BB1 , 過O作OH∥AB交BC與H,則OH為棱錐的高,求出OH 值和△B1C1F的面積,代入體積公式進行運算.
【考點精析】本題主要考查了直線與平面平行的判定和平面與平面垂直的判定的相關知識點,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若f(x)在[1,e]上的最小值為 ,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2-x)=f(x-1),且方程f(x)=x有兩個相等的實根.
(1)求f(x)的解析式;
(2)設g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]與[2m,2n],若存在,求出m,n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在菱形中, , ,以4個頂點為圓心的扇形的半徑為1,若在該菱形中任意選取一點,該點落在陰影部分的概率為,則圓周率的近似值為( )
A. B. C. D.
【答案】C
【解析】因為菱形的內角和為360°,
所以陰影部分的面積為半徑為1的圓的面積,
故由幾何概型可知,
解得.選C。
【題型】單選題
【結束】
12
【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個零點,則a的取值范圍為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | 1 | 2 | 3 |
利潤 | 2 | 3.9 | 5.5 |
(1)求利潤關于月份的線性回歸方程;
(2)試用(1)中求得的回歸方程預測4月和5月的利潤;
(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?
相關公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx﹣ )(ω>0)的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關于點( ,0)對稱
B.函數(shù)f(x)的圖象關于直線x= 對稱
C.函數(shù)f(x)的圖象在( ,π)上單調遞減
D.函數(shù)f(x)的圖象在( ,π)上單調遞增
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com