函數(shù)y=f(x)在(-2,0)上是減函數(shù),函數(shù)y=f(x-2)是偶函數(shù),則(  )
A、f(-
10
3
)<f(-
7
3
)<f(-
4
3
B、f(-
4
3
)<f(-
10
3
)<f(-
7
3
C、f(-
10
3
)<f(-
4
3
)<f(-
7
3
D、f(-
7
3
)<f(-
10
3
)<f(-
4
3
分析:函數(shù)y=f(x-2)是偶函數(shù),可得出函數(shù)關于x=-2對稱,又函數(shù)y=f(x)在(-2,0)上是減函數(shù)可得出函數(shù)在(-4,-2)是一增函數(shù),即得出自變量離x=-2的距離越近,函數(shù)值越大,由此規(guī)律比較大小選出正確選項即可
解答:解:∵函數(shù)y=f(x)在(-2,0)上是減函數(shù),函數(shù)y=f(x-2)是偶函數(shù)
∴函數(shù)關于x=-2對稱,數(shù)在(-4,-2)是一增函數(shù),
∴自變量離x=-2的距離越近,函數(shù)值越大,
由于-
10
3
,-
4
3
,-
7
3
都在(-4,0)上,且|-
10
3
+2|>|-
4
3
+2|>|-
7
3
+2|
∴f(-
10
3
)<f(-
4
3
)<f(-
7
3

故選C
點評:本題考查奇偶性與單調(diào)性的綜合,解題的關鍵是根據(jù)題設條件判斷出函數(shù)的性質自變量離x=-2的距離越近,函數(shù)值越大,利用此規(guī)律比較三個函數(shù)值的大小,本題考查了推理論證的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[2sin(x+
π
3
)+sinx]cosx-
3
sin2x

(1)求函數(shù)f(x)的最小值以及對應的x值.
(2)若函數(shù)f(x)關于點(a,0)(a>0)對稱,求a的最小值.
(3)做出函數(shù)y=f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)y=f(x)的圖象如圖,則函數(shù)y=f(
π
2
-x)•sinx
在[0,π]上的大致圖象為( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f( x )=2x-
ax
的定義域為(0,1](a為實數(shù)).
(Ⅰ)當a=-1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(Ⅲ)求函數(shù)y=f(x)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a是實數(shù),函數(shù)f(x)=
43
ax3+x2-(a+5)x
,如果函數(shù)y=f(x)在區(qū)間[-1,1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在(0,2)上是增函數(shù),且函數(shù)的圖象關于直線x=2對稱,則f(1),f(3.5)的大小關系是
f(1)>f(3.5)
f(1)>f(3.5)

查看答案和解析>>

同步練習冊答案