在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC.

(Ⅰ)求證:AM⊥BC;

(Ⅱ)若∠AMB=30°,求二面角M-AB-C的余弦值.

答案:
解析:

  證明:(I)∵NA=NB=NC

  ∴N是△ABC外接圓的圓心,可得∠ACB=90°,即BC⊥AC  2分

  ∵CM⊥平面ABC,BC平面ABC,

  ∴MC⊥BC                  4分

  ∴BC⊥面MAC

  ∴BC⊥MA                6分

  ∵CM⊥面ABC,MA=MB

  ∴CA=CB

  ∴∠ANC=∠BNC=90°

  ∴AB⊥CN

  連結(jié)MN,AB⊥MN

  ∴∠MNC為二面角M-AB-C的平面角.      8分

  設(shè)NA=NB=NC=1

  在Rt△AMN中,MN=ANtan∠MAN=tan75°=tan(45+30°)=2+    10分

  在Rt△MNC中,cos∠MNC=

  ∴二面角M-AB-C的余弦值是2-      12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山東省青島市2007年高三教學(xué)第一次統(tǒng)一質(zhì)量檢測(cè)數(shù)學(xué)文 題型:038

在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC.

(Ⅰ)求證:AM⊥BC;

(Ⅱ)若∠AMB=60°,求直線AM與CN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省青島市2007年高三教學(xué)第一次統(tǒng)一質(zhì)量檢測(cè)數(shù)學(xué)試題(文) 題型:044

在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC.

(Ⅰ)求證:AM⊥BC;

(Ⅱ)若∠AMB=60°,求直線AM與CN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)直線、平面、簡(jiǎn)單幾何體專項(xiàng)訓(xùn)練(河北) 題型:解答題

如圖所示,在三棱錐P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M為AB的中點(diǎn),四點(diǎn)P、A、M、C都在球O的球面上.

(1)證明:平面PAB⊥平面PCM;

(2)證明:線段PC的中點(diǎn)為球O的球心

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)理) 題型:解答題

(本小題滿分12分)

如圖,在三棱錐DABC中,已知△BCD是正三角

形,AB⊥平面BCD,ABBCa,EBC的中點(diǎn),

F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;

(2)求證AC⊥平面DEF

(3)若MBD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N

使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不

存在,試說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案