如圖13,正方形AMDE的邊長(zhǎng)為2,B,C分別為AM,MD的中點(diǎn).在五棱錐P ABCDE中,F為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直線BC與平面ABF所成角的大小,并求線段PH的長(zhǎng).
圖13
解:(1)證明:在正方形AMDE中,因?yàn)?i>B是AM的中點(diǎn),所以AB∥DE.
又因?yàn)?i>AB⊄平面PDE,
所以AB∥平面PDE.
因?yàn)?i>AB⊂平面ABF,且平面ABF∩平面PDE=FG,
所以AB∥FG.
(2)因?yàn)?i>PA⊥底面ABCDE,
所以PA⊥AB,PA⊥AE.
建立空間直角坐標(biāo)系Axyz,如圖所示,則A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),=(1,1,0).
設(shè)平面ABF的法向量為n=(x,y,z),則
即
令z=1,則y=-1.所以n=(0,-1,1).
設(shè)直線BC與平面ABF所成角為α,則
sin α=|cos〈n,〉|==.
因此直線BC與平面ABF所成角的大小為.
設(shè)點(diǎn)H的坐標(biāo)為(u,v,w).
因?yàn)辄c(diǎn)H在棱PC上,所以可設(shè)=λ(0<λ<1).
即(u,v,w-2)=λ(2,1,-2),所以u=2λ,v=λ,w=2-2λ.
因?yàn)?i>n是平面ABF的一個(gè)法向量,
所以n·=0,
即(0,-1,1)·(2λ,λ,2-2λ)=0,
解得λ=,所以點(diǎn)H的坐標(biāo)為.
所以PH==2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
黃種人人群中各種血型的人所占的比例見(jiàn)下表:
血型 | A | B | AB | O |
該血型的人所占的比例/% | 28 | 29 | 8 | 35 |
已知同種血型的人可以互相輸血,O型血的人可以給任一種血型的人輸血,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若他因病需要輸血,問(wèn)
(1)任找一個(gè)人,其血可以輸給小明的概率是多少?
(2)任找一個(gè)人,其血不能輸給小明的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)隨機(jī)變量X~N(3,1),若P(X>4)=p,則P(2<X<4)=( )
A.+p B.1-p
C.1-2p D.-p
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖15所示.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
圖15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖15,在四棱錐A BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.
(1)證明:DE⊥平面ACD;
(2)求二面角B AD E的大。
圖15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖16,四棱錐P ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
圖16
(1)求證:AB⊥PD.
(2)若∠BPC=90°,PB=,PC=2,問(wèn)AB為何值時(shí),四棱錐P ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將2本不同的數(shù)學(xué)書和1本語(yǔ)文書在書架上隨機(jī)排成一行,則2本數(shù)學(xué)書相鄰的概率為_(kāi)_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com