證明:(1)連接BD,ABCD是邊長為a,∠DAB=60°的菱形,
G為AD的中點,∴BG⊥AD,平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,
∴BG⊥平面PAD;
(2)連接PG,面PAD為正三角形,其所在平面垂直于面ABCD,
PG⊥平面ABCD,BG是PB在平面ABCD內(nèi)的射影,
BG⊥AD,
∴AD⊥PB;
(3)連接ED、GC交于點O,易得O為GC中點,
在平面PGC內(nèi),作OF∥GP,交PC于點F,F(xiàn)為PC中點,
FO⊥平面ABCD;
∴平面DEF⊥平面ABCD.
分析:(1)連接BD,利用ABCD是邊長為a,∠DAB=60°的菱形,G為AD的中點,推出BG⊥AD,然后證明BG⊥平面PAD;
(2)連接PG,利用PG⊥平面ABCD,BG是PB在平面ABCD內(nèi)的射影,推出AD⊥PB;
(3)連接ED、GC交于點O,易得O為GC中點,通過作OF∥GP,交PC于點F,F(xiàn)為PC中點,說明FO⊥平面ABCD;即可證明結論.
點評:本題考查直線與平面的位置關系的證明,平面與平面的垂直,直線與直線的垂直,考查轉(zhuǎn)化思想,空間想象能力.