分析 由題意畫出圖形,可知PF1⊥PF2,由已知結(jié)合雙曲線的定義求得|PF1|,|PF2|,再由勾股定理得答案.
解答 解:如圖,
∵圓x2+y2=a2+b2 =c2,
∴F1F2為圓的直徑,則PF1⊥PF2,
由$\left\{\begin{array}{l}{|P{F}_{1}|-|P{F}_{2}|=2a}\\{|P{F}_{1}|=3|P{F}_{2}|}\end{array}\right.$,解得|PF1|=3a,|PF2|=a,
∴$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=9{a}^{2}+{a}^{2}=4{c}^{2}$,
即$\frac{{c}^{2}}{{a}^{2}}=\frac{10}{4}$,得e=$\frac{c}{a}=\frac{\sqrt{10}}{2}$.
故答案為:$\frac{\sqrt{10}}{2}$.
點評 本題考查雙曲線的簡單性質(zhì),考查了雙曲線定義的應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M∩N=∅ | C. | M?N | D. | M⊆N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{7}$ | B. | $\frac{1}{35}$ | C. | $\frac{8}{35}$ | D. | $\frac{7}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | ||
C. | [kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$](k∈Z) | D. | [kπ+$\frac{5π}{6}$,kπ+$\frac{11π}{6}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
收到的手機紅包金額t(單位:元) | t≤100 | 100<t≤1000 | t>1000 |
人數(shù)(單位:人) | 150 | 100 | 50 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com