6.已知函數(shù)f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$,
(1)求a、b的值;
(2)化簡函數(shù)f(x)的解析式;
(3)寫出f(x)的值域.

分析 (1)直接由條件利用f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$,求得a、b的值.
(2)利用三角恒等變換,化簡函數(shù)f(x)的解析式.
(3)根據(jù)正弦函數(shù)的值域,求得f(x)的值域.

解答 解:(1)∵函數(shù)f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=2a-$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=2a•$\frac{1}{2}$+b•$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$,
解得a=$\frac{\sqrt{3}}{2}$,b=1.
(2)由(1)可得f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$=$\sqrt{3}$cos2x+sinxcosx-$\frac{\sqrt{3}}{2}$=$\sqrt{3}$•$\frac{1+cos2x}{2}$+$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$=sin(2x+$\frac{π}{3}$).
(3)根據(jù)f(x)=sin(2x+$\frac{π}{3}$),可得它的值域為[-1,1].

點評 本題主要考查三角恒等變換,正弦函數(shù)的值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.153和119的最大公約數(shù)是( 。
A.153B.119C.34D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k的值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=|x+1|-2|x-1|,則不等式f(x)>1的解集為( 。
A.($\frac{2}{3}$,2)B.($\frac{1}{3}$,2)C.($\frac{2}{3}$,3)D.($\frac{1}{3}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列{an}的前n項和為Sn=4n2-n+2,則該數(shù)列的通項公式為( 。
A.an=8n+5(n∈N*B.an=$\left\{\begin{array}{l}5(n=1)\\ 8n-5(n≥2,n∈{N^*})\end{array}\right.$
C.an=8n+5(n≥2)D.an=8n+5(n≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是20+4$\sqrt{5}$cm2,體積是8cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個焦點為F,該橢圓上有一點A,滿足△OAF是等邊三角形(O為坐標(biāo)原點),則橢圓的離心率是( 。
A.$\sqrt{3}-1$B.$2-\sqrt{3}$C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=2sinx+1({\frac{1}{2}π<x<\frac{3}{2}π})$,${f^{-1}}({\frac{1}{2}})$=arcsin$\frac{1}{4}+π$,(用反三角形式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.張三同學(xué)從7歲起到13歲每年生日時對自己的身高測量后記錄如表:
年齡 (歲)78910111213
身高 (cm)121128135141148154160
(Ⅰ)求身高y關(guān)于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預(yù)測張三同學(xué)15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{1}-\overline{x})({y}_{1}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\overline{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案