15.已知數(shù)列{an}的前n項和Sn滿足2Sn=3an-$\frac{1}{2}$,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=1+2log32an,求證:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$.

分析 (Ⅰ)由題意結(jié)合an和Sn的關(guān)系可得數(shù)列{an}為等比數(shù)列,由等比數(shù)列的通項公式可得;
(Ⅱ)由(Ⅰ)和對數(shù)的運(yùn)算可得bn=2n-1,由裂項相消法求和可證不等式.

解答 解:(Ⅰ)由題意可得數(shù)列{an}的前n項和Sn滿足2Sn=3an-$\frac{1}{2}$,
當(dāng)n=1時,$2{S_1}=3{a_1}-\frac{1}{2}$,即$2{a_1}=3{a_1}-\frac{1}{2}$,解得${a_1}=\frac{1}{2}$;
當(dāng)n≥2時,由$2{S_n}=3{a_n}-\frac{1}{2}$可得$2{S_{n-1}}=3{a_{n-1}}-\frac{1}{2}$,
兩式相減可得2an=3an-3an-1,變形可得$\frac{a_n}{{{a_{n-1}}}}=3$,
∴數(shù)列{an}是以${a_1}=\frac{1}{2}$為首項,3為公比的等比數(shù)列,
由等比數(shù)列的通項公式可得${a_n}=\frac{1}{2}•{3^{n-1}}$;
(Ⅱ)證明:∵bn=1+2log32an=2n-1,
∴$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{2}({1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}})$
=$\frac{1}{2}({1-\frac{1}{2n+1}})<\frac{1}{2}$

點(diǎn)評 本題考查數(shù)列的遞推公式和裂項相消法求和,涉及等比數(shù)列的判定和通項公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(2$\sqrt{3}$,2),則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AB是圓O的直徑,C,F(xiàn)為圓O上的點(diǎn),CA是∠BAF的角平分線,CD與圓O切于點(diǎn)C,且交AF的延長線于點(diǎn)D,CM⊥AB,垂足為點(diǎn)M.
(1)求證:DF=BM;
(2)若圓O的半徑為1,∠BAC=60°,試求線段CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓C的中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0),左頂點(diǎn)為A,且F1為AO的中點(diǎn).
(1)求橢圓C的方程;
(2)若橢圓C1方程為:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1(m>n>0)$,橢圓C2方程為:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=λ(λ>0,且λ≠1)$,則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M,N,試求弦長|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點(diǎn)分別為F1、F2,點(diǎn)$P(2,\sqrt{3})$,且F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)A(2,0)且斜率為k的直線l與橢圓C交于D、E兩點(diǎn),點(diǎn)F2為橢圓的右焦點(diǎn),求證:直線DF2與直線EF2的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點(diǎn)A(2,0),離心率$e=\frac{1}{2}$,斜率為k(0<k≤1)直線l過點(diǎn)M(0,2),與橢圓C交于G,H兩點(diǎn)(G在M,H之間),與x軸交于點(diǎn)B.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)P為x軸上不同于點(diǎn)B的一點(diǎn),Q為線段GH的中點(diǎn),設(shè)△HPG的面積為S1,△BPQ面積為S2,求$\frac{S_1}{S_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過A($\sqrt{2}$,0),離心率為$\frac{\sqrt{2}}{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)P,Q,R橢圓上三點(diǎn),OQ與PR交于M點(diǎn),且$\overrightarrow{OQ}$=3$\overrightarrow{OM}$,當(dāng)PR中點(diǎn)恰為點(diǎn)M時,判斷△OPR的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A,B分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn),不同兩點(diǎn)P,Q在橢圓C上,且關(guān)于x軸對稱,設(shè)直線AP,BQ的斜率分別為m,n,則當(dāng)$\frac{2b}{a}+\frac{a}+\frac{1}{2mn}$+ln|m|+ln|n|取最小值時,橢圓C的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.復(fù)數(shù)z1=sin2x+i•cos2x,z2=sin2x+i•cosx(其中x∈R,i為虛數(shù)單位),在復(fù)平面上,復(fù)數(shù)z1、z2能否表示同一個點(diǎn):若能,指出該點(diǎn)表示的復(fù)數(shù);若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案