6.如圖,AB是圓O的直徑,C,F(xiàn)為圓O上的點,CA是∠BAF的角平分線,CD與圓O切于點C,且交AF的延長線于點D,CM⊥AB,垂足為點M.
(1)求證:DF=BM;
(2)若圓O的半徑為1,∠BAC=60°,試求線段CD的長.

分析 (1)根據(jù)三角形全等以及切割線定理進行證明即可證明DF=BM;
(2)根據(jù)三角形中的邊角關(guān)系進行求解即可.

解答 解:(1)連接OC,CB,則有∠OAC=∠OCA,
∵CA是∠BAF的角平分線,
∴∠OAC=∠FAC,
∴∠FAC=∠ACO,則OC∥AD,
∵DC是圓O的切線,∴CD⊥OC,
則CD⊥AD,
由題意得△AMC≌△ADC,
∴DC=CM,DA=AM,
由切割線定理得DC2=DF•DA=DF•AM=CM2,①,
在Rt△ABC中,由射影定理得CM2=AM•BM,②,
由①②得DF•AM=AM•MB,即DF=MB.
(2)在Rt△ABC中,AC=ABcos∠BAC=2cos30°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
則CM=$\frac{1}{2}$AC=$\frac{\sqrt{3}}{2}$,
于是CD=CM=$\frac{\sqrt{3}}{2}$,
即CD的長為$\frac{\sqrt{3}}{2}$.

點評 本題主要考查幾何的推理和證明,根據(jù)切割線定理以及三角形全等關(guān)系是解決本題的關(guān)鍵.考查學(xué)生的運算和推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=-2cosx-3,當x的取值集合為{x|x=2kπ+π,k∈Z}時,y取得最大值;當x的取值集合為{x|x=2kπ,k∈Z}時,y取得最小值-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,a4,a10是方程2x2-x-7=0的兩根,則a7等于( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{7}{2}$D.-$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.點P(x0,y0)為雙曲線C:$\frac{x^2}{4}-\frac{y^2}{9}$=1上一點,B1、B2為C的虛軸頂點,$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}$<8,則x0的范圍是(  )
A.$(-\frac{{6\sqrt{26}}}{13}\;,\;-2]∪[2\;,\;\frac{{6\sqrt{26}}}{13})$B.$(-\frac{{6\sqrt{26}}}{13}\;,\;-2)∪(2\;,\;\frac{{6\sqrt{26}}}{13})$
C.$(-2\sqrt{2}\;,\;-2]∪[2\;,\;2\sqrt{2})$D.$(-2\sqrt{2}\;,\;-2)∪(2\;,\;2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓錐曲線$\frac{x^2}{m}$+y2=1的離心率為$\sqrt{7}$,則m=( 。
A.$\frac{1}{6}$B.6C.-$\frac{1}{6}$D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.雙曲線C:y2-x2=m(m>0)的漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標系xoy中,雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線與橢圓${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于第一、二象限內(nèi)的兩點分別為A,B,若△OAB的外接圓的圓心為$({0,\sqrt{2}a})$,則$\frac{a}$的值為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和Sn滿足2Sn=3an-$\frac{1}{2}$,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=1+2log32an,求證:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,直線l:y=$\frac{1}{2}$x交橢圓于A、B兩點,點F關(guān)于直線l的對稱點E恰好在橢圓上,且|AE|+|BF|=6,則橢圓的短軸長為4.

查看答案和解析>>

同步練習(xí)冊答案