已知圓心為C的圓經(jīng)過點(diǎn)A(1,1)和B(2,-2),且圓心在直線l:x-y+1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P是圓C上的任一點(diǎn),求當(dāng)點(diǎn)P到直線x+y-5=0的距離最小時(shí),P點(diǎn)的坐標(biāo).
考點(diǎn):圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系
專題:綜合題,直線與圓
分析:(1)設(shè)圓心為(a,a+1),則
(a-1)2+a2
=
(a-2)2+(a+3)2
,即可求出圓心與半徑,從而可求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)圓心C到直線x+y-5=0的距離最小時(shí),點(diǎn)P到直線x+y-5=0的距離最小,直線x-y+1=0與圓的方程聯(lián)立,即可求出P點(diǎn)的坐標(biāo).
解答: 解:(1)設(shè)圓心為(a,a+1),則
(a-1)2+a2
=
(a-2)2+(a+3)2
,
∴a=-3,
∴圓心C(-3,-2),半徑為5,
∴圓心為C的圓的標(biāo)準(zhǔn)方程為(x+3)2+(y+2)2=25;
(2)圓心C到直線x+y-5=0的距離最小時(shí),點(diǎn)P到直線x+y-5=0的距離最小,
直線x-y+1=0與圓的方程聯(lián)立,可得x=-3±
5
2
2
,
∴當(dāng)點(diǎn)P到直線x+y-5=0的距離最小時(shí),P點(diǎn)的坐標(biāo)為(-3+
5
2
2
,-2+
5
2
2
).
點(diǎn)評(píng):本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,確定圓的方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且4x2+y2+2x+y=6,則2x+y最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠有甲、乙、丙三類產(chǎn)品,其數(shù)量之比為1:2:4,現(xiàn)要用分層抽樣的方法從中抽取140件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),則乙類產(chǎn)品應(yīng)抽取的件數(shù)為( 。
A、20B、40C、60D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)=
f(x+1)  (x<2)
(
1
2
)x   (x≥2)
,求f(log23)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求漸近線為y=±
2
3
x,經(jīng)過點(diǎn)M(
9
2
,-1)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AE⊥BD于E,延長(zhǎng)AE交BC于F,將△ABD沿BD折起,使平面ABD⊥平面BCD,如圖2所示.

(Ⅰ)求證:AE⊥平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值.
(Ⅲ)在線段AF上是否存在點(diǎn)M使得EM∥平面ADC?若存在,請(qǐng)指明點(diǎn)M的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)于任意x∈[0,2]
(1)若x2+2x+a>0恒成立,求實(shí)數(shù)a的取值范圍;
(2)若x2+2x+a<2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知集合A={y|y=x2+1,x∈Z},B={y|=-x2-3x+1,x∈Z},則用列舉法表示A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x-2)是偶函數(shù),且對(duì)任意x∈R恒有f(3-x)+f(x-1)=2014,又f(4)=2013,則f(2014)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案