【題目】為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開(kāi)始,全面實(shí)施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見(jiàn)下表:

實(shí)施項(xiàng)目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實(shí)施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

【答案】C

【解析】

首先算出2019年的年脫貧率,再與年以前的年均脫貧率相比即可.

由圖表得,2019年的年脫貧率為

.

所以年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知數(shù)列{an}{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù).

)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

)設(shè)0abSn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax2+2axlnx1,aR

1)當(dāng)a時(shí),求fx)的單調(diào)區(qū)間及極值;

2)若a為整數(shù),且不等式fxx對(duì)任意x∈(0,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列各式極限:

1;

2;

3;

4;

5;

6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)到兩定點(diǎn)、構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為

1)求軌跡的方程;

2)設(shè)直線軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列項(xiàng)和為,且滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列項(xiàng)和;

(3)在數(shù)列中,是否存在連續(xù)的三項(xiàng),按原來(lái)的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

是偶函數(shù);的最大值為

個(gè)零點(diǎn);在區(qū)間單調(diào)遞增.

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查,為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.

方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960.

方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次;否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn).

假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè),試比較方案②中,分別取2,34時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn) 的面積為,直線過(guò)上的點(diǎn).

1)求的方程;

2)設(shè)的短軸端點(diǎn),直線過(guò)點(diǎn),證明:四邊形的兩條對(duì)角線的交點(diǎn)在定直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案