11.已知α是第四象限角,sinα=-$\frac{12}{13}$,則tanα=( 。
A.$-\frac{5}{13}$B.$\frac{5}{13}$C.$-\frac{12}{5}$D.$\frac{12}{5}$

分析 利用同角三角函數(shù)的基本關(guān)系,求得tanα的值.

解答 解:∵α是第四象限角,sinα=-$\frac{12}{13}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{5}{13}$,
則tanα=$\frac{sinα}{cosα}$=-$\frac{12}{5}$,
故選:C.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解不等式:(1-a)x2-2x+1<0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow a$=(cosθ,1),向量$\overrightarrow b$=(1,-1),則|$\overrightarrow a$-$\overrightarrow b$|的最小值是( 。
A.4B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知tan(α+β)=-3,tan(α-β)=2,則$\frac{sin2α}{cos2β}$的值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4個不同的實數(shù)根,則實數(shù)a的取值范圍是$({0,\frac{e^2}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=x•ex
(1)求f(x)的極值;
(2)k×f(x)≥$\frac{1}{2}$x2+x在[-1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=-2sin(2x+φ)(|φ|<π),若($\frac{π}{5}$,$\frac{5}{8}$π)是f(x)的一個單調(diào)遞增區(qū)間,則φ的取值范圍是( 。
A.$[-\frac{9}{10}π,-\frac{3}{10}π]$B.$[\frac{2}{5}π,\frac{9}{10}π]$C.$[\frac{π}{10},\frac{π}{4}]$D.$[-π,-\frac{π}{10}]∪(\frac{π}{4},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖的程序框圖,若輸入a=0,則輸出的結(jié)果為( 。
A.1022B.2046C.1024D.2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平行四邊形ABCD的三個頂點分別為A(-1,-2),B(3,-1),C(5,6),則頂點D的坐標(biāo)為( 。
A.(1,5)B.(2,2)C.(1,3)D.(2,4)

查看答案和解析>>

同步練習(xí)冊答案