【題目】吉安一中舉行了一次環(huán)保知識競賽活動解本了次競賽學生成績情況,從中抽取部分生的分數(shù)(分取正整數(shù),滿分為樣(樣本容)進行統(tǒng)計. 按照 的分作出率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競賽學生成績是分以上(含分)的同學中隨機抽取名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設表示所抽取的名同學中得分在的學生人數(shù),的分布列及數(shù)學期望.

【答案】(1),;(2)分布列見解析,.

【解析】

試題分析:(1)根據(jù)頻率頻數(shù)樣本容量, 可得,再根據(jù)頻率之和為,可求的值;(2)首先確定的可能取值為,基本事件的總數(shù)為,求出相應概率列出分布列,利用期望公式可得結果.

試題解析:(1)由題意可知,樣本容量,又由,得.

(2)由題意可知,分數(shù)在人,分數(shù)在人,共人,抽取的名同學中得分在的學生個數(shù)的可能取值為,則, 的分布列為

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資根據(jù)長期收益率市場預測,投資類產品的收益與投資額成正比投資類產品的收益與投資額的算術平方根成正比已知投資1萬元時兩類產品的收益分別為0125萬元和05萬元

1分別寫出兩類產品的收益與投資額的函數(shù)關系;

2該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)是R上的偶函數(shù),且當x>0時,函數(shù)的解析式為f(x)= .

(1)判斷并證明f(x)在(0,+∞)上的單調性;

(2)求當x<0時,函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 .

(1)若曲線在點處的切線的斜率為5,求的值;

(2)若函數(shù)的最小值為,求的值;

(3)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖幾何體是四棱錐,為正三角形, ,且.

(1)求證: 平面平面

(2)是棱的中點,求證:平面;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),其中常數(shù)

(1)若函數(shù)分別在區(qū)間上單調,試求的取值范圍;

(2)當時,方程有四個不相等的實根

①證明: ;

②是否存在實數(shù),使得函數(shù)在區(qū)間單調,且的取值范圍為,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新一屆班委會的7名成員有、三人是上一屆的成員,現(xiàn)對7名成員進行如下分工.

(Ⅰ)若正、副班長兩職只能由、三人選兩人擔任,則有多少種分工方案?

(Ⅱ)若、三人不能再擔任上一屆各自的職務,則有多少種分工方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).

(1)求關于的函數(shù)關系式;

(2)若 ,求當下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠擬生產甲、乙兩種適銷產品,每件銷售收入分別為3000元,2000元.甲、乙產品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2,加工一件乙設備所需工時分別為2,1.A、B兩種設備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產甲,乙產品的件數(shù).

(Ⅰ)用列出滿足生產條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

(Ⅱ)問分別生產甲、乙兩種產品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

同步練習冊答案