【題目】已知拋物線C: ,點(diǎn)在x軸的正半軸上,過點(diǎn)M的直線與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若,且直線的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?
【答案】(1)以AB為直徑的圓的方程是;(2)存在定點(diǎn),滿足題意.
【解析】試題分析:(1)由題意得,直線的方程與拋物線方程聯(lián)立,利用韋達(dá)定理,可得圓心坐標(biāo)和圓的半徑,從而可得圓的方程.
(2)若存在定點(diǎn)這樣的點(diǎn),使得恒為定值;直線: 與拋物線C: 聯(lián)立,計(jì)算,,利用恒為定值,可求出點(diǎn)的坐標(biāo).
試題解析:(1)當(dāng)時(shí), ,此時(shí),點(diǎn)M為拋物線C的焦點(diǎn),
直線的方程為,設(shè),聯(lián)立,
消去y得, ,∴, ,∴圓心坐標(biāo)為.
又,∴圓的半徑為4,∴圓的方程為.
(2)由題意可設(shè)直線的方程為,則直線的方程與拋物線C: 聯(lián)立,
消去x得: ,則, ,
對(duì)任意恒為定值,
于是,此時(shí).
∴存在定點(diǎn),滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)|θ|< ,n為正整數(shù),數(shù)列{an}的通項(xiàng)公式an=sin tannθ,其前n項(xiàng)和為Sn
(1)求證:當(dāng)n為偶函數(shù)時(shí),an=0;當(dāng)n為奇函數(shù)時(shí),an=(﹣1) tannθ;
(2)求證:對(duì)任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(Ⅱ)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時(shí)間在5—7分鐘,乙每次解答一道幾何題所用的時(shí)間在6—8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, 也是拋物線的焦點(diǎn),點(diǎn)為與在第一象限的交點(diǎn),且.
(1)求的方程;
(2)平面上的點(diǎn)滿足,直線,且與交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列中, ,且成等差數(shù)列.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過圓上任意一點(diǎn)向軸引垂線垂足為(點(diǎn)、可重合),點(diǎn)為的中點(diǎn).
(1)求的軌跡方程;
(2)若點(diǎn)的軌跡方程為曲線,不過原點(diǎn)的直線與曲線交于、兩點(diǎn),滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)棱底面,且側(cè)棱的長是,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).且曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組與的對(duì)應(yīng)數(shù)據(jù):
據(jù)此計(jì)算出的回歸方程為.
(i)求參數(shù)的估計(jì)值;
(ii)若把回歸方程當(dāng)作與的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com