分析 x>0時,求f′(x),并容易判斷出f′(x)>0,所以f(x)在(0,+∞)上是單調(diào)函數(shù).然后判斷有沒有x1,x2使得f(x1)f(x2)<0:分別取x=2017-2017,1,便可判斷f(2017-2017)<0,f(1)>0,從而得到f(x)在(0,+∞)上有一個零點,根據(jù)奇函數(shù)的對稱性便得到f(x)在(-∞,0)上有一個零點,而因為f(x)是奇函數(shù),所以f(0)=0,這樣便得到在R上f(x)零點個數(shù)為3.
解答 解:x>0時,f′(x)=2017xln2017+$\frac{1}{xln2017}$>0,∴f(x)在(0,+∞)上單調(diào)遞增,
取x=2017-2017,則f(2017-2017)=$201{7}^{\frac{1}{2017}}$-2017<0,又f(1)=2017>0;
∴f(x)在(0,+∞)上有一個零點,根據(jù)奇函數(shù)關(guān)于原點對稱,f(x)在(-∞,0)也有一個零點;
又f(0)=0;
∴函數(shù)f(x)在R上有3個零點.
故答案為:3.
點評 考查奇函數(shù)的概念,函數(shù)導(dǎo)數(shù)符號和函數(shù)單調(diào)性的關(guān)系,函數(shù)零點的概念,以及判斷函數(shù)在一區(qū)間上有沒有零點,以及有幾個零點的方法,奇函數(shù)圖象關(guān)于原點的對稱性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{5}{6}$ | D. | -$\frac{7}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com