3.中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則5288用算籌式可表示為( 。
A.B.C.D.

分析 根據(jù)新定義直接判斷即可.

解答 解:由題意各位數(shù)碼的籌式需要縱橫相間,
個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,
則5288 用算籌可表示為11,
故選:C

點評 本題考查了新定義的學(xué)習(xí),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有下列命題:
①在函數(shù)$y=cos({x-\frac{π}{4}})cos({x+\frac{π}{4}})$的圖象中,相鄰兩個對稱中心的距離為π;
②函數(shù)y=$\frac{x+3}{x-1}$的圖象關(guān)于點(-1,1)對稱;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sinx≤1,則¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的個數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=2017x+log2017x,則f(x)在R上的零點的個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“a=$\frac{1}{5}$”是“直線2ax+(a-1)y+2=0與直線(a+1)x+3ay+3=0垂直”的充分不必要.條件(從“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中選取一個填入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{a}{x-2}+lnx$,其中a∈R.
(Ⅰ)給出a的一個取值,使得曲線y=f(x)存在斜率為0的切線,并說明理由;
(Ⅱ)若f(x)存在極小值和極大值,證明:f(x)的極小值大于極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某人5次上班途中所花的時間(單位:分鐘)分別為12,8,10,11,9,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,拋物線E:x2=4y的焦點B是雙曲線虛軸上的一個頂點,若線段BF與雙曲線C的右支交于點A,且$\overrightarrow{BA}$=3$\overrightarrow{AF}$,則雙曲線C的離心率為$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某公司在銷售某種環(huán)保材料過程中,記錄了每日的銷售量x(噸)與利潤y(萬元)的對應(yīng)數(shù)據(jù),下表是其中的幾組對應(yīng)數(shù)據(jù),由此表中的數(shù)據(jù)得到了y關(guān)于x的線性回歸方程$\widehat{y}$=0.7x+a,若每日銷售量達(dá)到10噸,則每日利潤大約是( 。
 x 3 5
 y 2.5 3 4 4.5
A.7.2萬元B.7.35萬元C.7.45萬元D.7.5萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在同一直角坐標(biāo)系中,函數(shù)$y=sin({x+\frac{π}{3}})({x∈[{0,2π})})$的圖象和直線y=$\frac{1}{2}$的交點的個數(shù)是2.

查看答案和解析>>

同步練習(xí)冊答案