17.已知f(x)=ax-lnx,a∈R
(1)若f(x)在x=1處有極值,求f(x)的單調(diào)遞增區(qū)間;
(2)是否存在正實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

分析 (1)利用f(x)在x=1處有極值,確定a的值,利用導(dǎo)數(shù)大于0,結(jié)合函數(shù)的定義域,即可得到f(x)的單調(diào)遞增區(qū)間;
(2)分類討論,確定函數(shù)f(x)在區(qū)間(0,e]上的單調(diào)性,從而可得函數(shù)的最小值,利用最小值是3,建立方程,即可求得結(jié)論.

解答 解:(1)∵f(x)在x=1處有極值,∴f′(1)=0,
∵f′(x)=a-$\frac{1}{x}$,∴a-1=0,∴a=1,
∴f′(x)=1-$\frac{1}{x}$,令f′(x)>0,可得x<0或x>1;
∵x>0,∴x>1
∴f(x)的單調(diào)遞增區(qū)間為(1,+∞);
(2)假設(shè)存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,
①當(dāng)a≤0時,∵x∈(0,e],∴f′(x)<0,∴f(x)在區(qū)間(0,e]上單調(diào)遞減,
∴f(x)min=f(e)=ae-1=3,∴a=$\frac{4}{e}$(舍去);
②當(dāng)0<$\frac{1}{a}$<e時,f(x)在區(qū)間(0,$\frac{1}{a}$)上單調(diào)遞減,在($\frac{1}{a}$,e]上單調(diào)遞增
∴f(x)min=f($\frac{1}{a}$)=1+lna=3,∴a=e2,滿足條件;
③當(dāng)$\frac{1}{a}$≥e時,∵x∈(0,e],∴f′(x)<0,∴f(x)在區(qū)間(0,e]上單調(diào)遞減
∴f(x)min=f(e)=ae-1=3,∴a=$\frac{4}{e}$(舍去),
綜上所述,存在實數(shù)a=e2,使f(x)在區(qū)間(0,e]的最小值是3.

點評 本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的極值與單調(diào)性,考查函數(shù)的最值,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知y=f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則滿足條件f(m)<f(3)的實數(shù)m的范圍是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.2011年9月1日起,我國實行新個人所得稅率,起征點為3500元,超過部分實行超額累進(jìn)稅率.如果月工資20000元,則應(yīng)交稅為3120元.
應(yīng)納銳收入(元)稅率(%)
不超過1500元3
超過1500元至4500元10
超過4500元至9000元20
超過9000元至35000元25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)=\frac{1}{x}{log_3}(\sqrt{{x^2}-3x+2}+\sqrt{-{x^2}-3x+4})$的定義域為( 。
A.(-∞,-4)∪[2,+∞)B.(-4,0)∪(0,1)C.(-4,0)∪(0,1)D.[-4,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2+ax-lnx在[1,2]上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,-1]B.$(-∞,-\frac{7}{2}]$C.$[-\frac{7}{2},-1)$D.$[-\frac{7}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx.
(1)若F(x)=$\frac{2f(x)}{x}$,求F(x)的單調(diào)區(qū)間;
(2)若G(x)=[f(x)]2-kx在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“?x∈(1,+∞),都有x2-lnx>$\frac{a}{x}$成立”為真命題,則實數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若不等式x2+mx+$\frac{m}{2}$>0恒成立,則實數(shù)m的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合$A=\left\{{x\left|{{2^x}>\frac{1}{2}}\right.}\right\}$,B={x|x-1>0},則A∩(∁RB)={x|-1<x≤1}.

查看答案和解析>>

同步練習(xí)冊答案