6.設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與g($\frac{1}{x}$)的大小關(guān)系.

分析 (1)由f(1)=0,且f′(x)=$\frac{1}{x}$可得f(x)=lnx,從而化簡(jiǎn)g(x)=f(x)+f′(x)=lnx+$\frac{1}{x}$,從而求導(dǎo)確定函數(shù)的單調(diào)性及最小值;
(2)構(gòu)造F(x)=g(x)-g($\frac{1}{x}$)=lnx+$\frac{1}{x}$-(ln$\frac{1}{x}$+x)=2lnx+$\frac{1}{x}$-x,從而求導(dǎo)F′(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$-1=-$\frac{(x-1)^{2}}{{x}^{2}}$≤0,從而由函數(shù)的單調(diào)性判斷大小關(guān)系.

解答 解:(1)∵f(1)=0,且f′(x)=$\frac{1}{x}$,
∴f(x)=lnx,
∴g(x)=f(x)+f′(x)=lnx+$\frac{1}{x}$,
g′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
故g(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),
故gmin(x)=g(1)=1;
(2)令F(x)=g(x)-g($\frac{1}{x}$)=lnx+$\frac{1}{x}$-(ln$\frac{1}{x}$+x)=2lnx+$\frac{1}{x}$-x,
故F′(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$-1=-$\frac{(x-1)^{2}}{{x}^{2}}$≤0,
故F(x)=g(x)-g($\frac{1}{x}$)在(0,+∞)上是減函數(shù),
且當(dāng)x=1時(shí),F(xiàn)(x)=0,即g(x)=g($\frac{1}{x}$),
故當(dāng)0<x<1時(shí),g(x)>g($\frac{1}{x}$);當(dāng)x>1時(shí),g(x)<g($\frac{1}{x}$).

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及構(gòu)造函數(shù)判斷大小關(guān)系的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:“存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$≥1”,則下列說(shuō)法正確的是(  )
A.p是假命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命題;¬p“不存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$<1”
C.p是真命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命題;¬p“任意x∈(-∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列3個(gè)命題中,正確的個(gè)數(shù)為( 。
①命題“?x∈R,x2-1>0”的否定是“?x0∈R,x02-1≤0”;
②“p∧q為真”是“p∨q為真”的充分條件;
③“若p則q為真”是“若?q則?p為真”的充要條件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=3e|x|.若存在實(shí)數(shù)t∈[-1,+∞),使得對(duì)任意的x∈[1,m],m∈Z且m>1,都有f(x+t)≤3ex,則m的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=-$\frac{1}{3}$x3+2ax2-3a2x+b(0<a<1)
(Ⅰ)求函數(shù)f(x)單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[a+1,a+2]時(shí),恒有|f′(x)|≤a,試確定a的取值范圍;
(Ⅲ)當(dāng)a=$\frac{2}{3}$時(shí),關(guān)于x的方程f(x)=0在區(qū)間[1,3]上恒有兩個(gè)相異的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1+a3=10,a3+a5=40.設(shè)bn=log2an
(1)求數(shù)列{bn}的通項(xiàng)公式;     
(2)若c1=1,cn+1=cn+$\frac{b_n}{a_n}$,求證:cn<3.
(3)是否存在正整數(shù)k,使得$\frac{1}{_{n}+1}$+$\frac{1}{_{n}+2}$+…+$\frac{1}{_{n+n}}$>$\frac{k}{10}$對(duì)任意正整數(shù)n均成立?若存在,求出k的最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí)有f(x)=2x,則f(2015)=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),則實(shí)數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在如圖所示的正方形中隨機(jī)擲一粒豆子,豆子落在該正方形內(nèi)切圓的四分之一圓(如圖陰影部分)中的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{π}{32}$

查看答案和解析>>

同步練習(xí)冊(cè)答案