12.設(shè){an}是正項等比數(shù)列,且a5a6=10,則lga1+lga2+…+lga9+lga10=( 。
A.5B.1+lg5C.2D.10

分析 利用等比數(shù)列以及對數(shù)運算法則化簡求解即可.

解答 解:{an}是正項等比數(shù)列,且a5a6=10,則lga1+lga2+…+lga9+lga10=lg(a1•a2•…•a9•a10)=lg(a5a65=5.
故選:A.

點評 本題考查等比數(shù)列的性質(zhì),對數(shù)運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=x2+(2a-1)x+1在區(qū)間(2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是(  )
A.[-$\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題是正確的為( 。
A.若x=y,則$\sqrt{x}$=$\sqrt{y}$B.若x2=1,則x=1C.若$\frac{1}{x}$=$\frac{1}{y}$,則x=yD.若x<y,則 x2<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,正四棱錐P-ABCD中,O為底面正方形的中心,側(cè)棱PA與底面ABCD所成的角的正切值為$\frac{\sqrt{6}}{2}$.
(1)求側(cè)面PAD與底面ABCD所成的二面角的大小;
(2)若E是PB的中點,求異面直線PD與AE所成角的正切值;
(3)問在棱AD上是否存在一點F,使EF⊥側(cè)面PBC,若存在,試確定點F的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)F1,F(xiàn)2分別是橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的左、右焦點,
(Ⅰ)若橢圓的離心率為$\frac{1}{2}$,求b的值;
(Ⅱ)過F1的直線l與E相交于A、B兩點,若|AF2|,|AB|,|BF2|成等差數(shù)列,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.過點P(3,0)的直線l交圓C:x2+y2-4x=0于A,B兩點,C為圓心,則$\overrightarrow{CA}•\overrightarrow{CB}$的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)滿足f(x)=ax2+bx+c(a≠0),滿足f(x+1)-f(x)=2x,且f(0)=1,
(1)函數(shù)f(x)的解析式:
(2)函數(shù)f(x)在區(qū)間[-1,1]上的最大值和最小值:
(3)若當(dāng)x∈R時,不等式f(x)>3x-a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=$\sqrt{x+1}$+lg(2-x)的定義域是集合M,集合N={x|x(x-3)<0}
(1)求M∪N;
(2)求(∁RM)∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線l1:y=x+a和l2:y=x+b將單位圓C:x2+y2=1分成長度相等的四段弧,則a2+b2=( 。
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

同步練習(xí)冊答案