已知某隨機(jī)變量X的分布列如下(p,q∈R):

X

1

﹣1

P

p

q

且X的數(shù)學(xué)期望,那么X的方差D(X)=  

考點(diǎn):

離散型隨機(jī)變量的期望與方差.

專(zhuān)題:

概率與統(tǒng)計(jì).

分析:

利用數(shù)學(xué)期望公式及概率的性質(zhì),求出p,q,再利用方差公式,即可得到結(jié)論.

解答:

解:∵X的數(shù)學(xué)期望,

∴p=,q=

∴X的方差D(X)==

故答案為:

點(diǎn)評(píng):

本題考查期望與方差公式,考查概率的性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知挑選空軍飛行學(xué)員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需過(guò)“五關(guān)”--目測(cè)、初檢、復(fù)檢、文考、政審等.若某校甲、乙、丙三個(gè)同學(xué)都順利通過(guò)了前兩關(guān),有望成為光榮的空軍飛行學(xué)員.根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過(guò)復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過(guò)文考關(guān)的概率分別是0.6,0.5,0.4,通過(guò)政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過(guò)復(fù)檢的概率;
(2)設(shè)通過(guò)最后三關(guān)后,能被錄取的人數(shù)為X,求隨機(jī)變量X的期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•洛陽(yáng)一模)某同學(xué)進(jìn)行一項(xiàng)闖關(guān)游戲,規(guī)則如下:游戲共三道關(guān),闖每一道關(guān)通過(guò),方可去闖下一道關(guān),否則停止;同時(shí)規(guī)定第i(i=1,2,3)次闖關(guān)通過(guò)得i分,否則記0分.已知該同學(xué)每道關(guān)通過(guò)的概率都為0.8,且不受其它因素影響.
(1)求該同學(xué)恰好得3分的概率;
(2)設(shè)該同學(xué)停止闖關(guān)時(shí)所得總分為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年大連市高二六月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

某象棋教練用下列方式考核隊(duì)員:任一名隊(duì)員可以選擇與一級(jí)棋士或二級(jí)棋士對(duì)奕,規(guī)定與一級(jí)棋士對(duì)奕取勝得3分,不勝得0分,與二級(jí)棋士對(duì)弈取勝得2分,不勝得0分,如果前兩局得分超過(guò)3分即算考核合格,否則比賽三局.某位隊(duì)員與一級(jí)棋士對(duì)弈獲勝的概率為q1,與二級(jí)棋士對(duì)弈獲勝的概率為0.6,該隊(duì)員選擇先與一級(jí)棋士對(duì)奕,以后都與二級(jí)棋士對(duì)奕,用X表示該隊(duì)員考核結(jié)束后所得的總分,已知P(X=0)=0.128.

(1)求q1的值;

(2)寫(xiě)出隨機(jī)變量X的分布列并求出數(shù)學(xué)期望EX;

(3)試比較該隊(duì)員選擇都與二級(jí)棋士對(duì)奕與上述方式最后得分大于3的概率的大小;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知挑選空軍飛行學(xué)員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需過(guò)“五關(guān)”--目測(cè)、初檢、復(fù)檢、文考、政審等.若某校甲、乙、丙三個(gè)同學(xué)都順利通過(guò)了前兩關(guān),有望成為光榮的空軍飛行學(xué)員.根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過(guò)復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過(guò)文考關(guān)的概率分別是0.6,0.5,0.4,通過(guò)政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過(guò)復(fù)檢的概率;
(2)設(shè)通過(guò)最后三關(guān)后,能被錄取的人數(shù)為X,求隨機(jī)變量X的期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年河南省洛陽(yáng)市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某同學(xué)進(jìn)行一項(xiàng)闖關(guān)游戲,規(guī)則如下:游戲共三道關(guān),闖每一道關(guān)通過(guò),方可去闖下一道關(guān),否則停止;同時(shí)規(guī)定第i(i=1,2,3)次闖關(guān)通過(guò)得i分,否則記0分.已知該同學(xué)每道關(guān)通過(guò)的概率都為0.8,且不受其它因素影響.
(1)求該同學(xué)恰好得3分的概率;
(2)設(shè)該同學(xué)停止闖關(guān)時(shí)所得總分為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案