設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù).若對(duì)任意的n∈N*,存在k∈N*,使得=an·an+2k成立,則稱數(shù)列{an}為“Jk型”數(shù)列.
(1)若數(shù)列{an}是“J2型”數(shù)列,且a2=8,a8=1,求a2n;
(2)若數(shù)列{an}既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列{an}是等比數(shù)列.
(1)a2n=a2qn-1=()n-4.
(2)見解析
【解析】【解析】
(1)由題意得a2,a4,a6,a8,…成等比數(shù)列,且公比q=()=,
所以a2n=()n-4.
(2)由數(shù)列{an}是“J4型”數(shù)列,得
a1,a5,a9,a13,a17,a21,…成等比數(shù)列,設(shè)公比為t.
由數(shù)列{an}是“J3型”數(shù)列,得
a1,a4,a7,a10,a13,…成等比數(shù)列,設(shè)公比為α1;
a2,a5,a8,a11,a14,…成等比數(shù)列,設(shè)公比為α2;
a3,a6,a9,a12,a15,…成等比數(shù)列,設(shè)公比為α3.
則=α14=t3,=α24=t3,=α34=t3.
所以α1=α2=α3,不妨記α=α1=α2=α3,且t=α.
于是a3k-2=a1αk-1=a1()(3k-2)-1,
a3k-1=a5αk-2=a1tαk-2=a1αk-=a1()(3k-1)-1,
a3k=a9αk-3=a1t2αk-3=a1αk-=a1()3k-1,
所以an=a1()n-1,故{an}為等比數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項(xiàng)式定理(解析版) 題型:填空題
若(x2-)n的展開式中含x的項(xiàng)為第6項(xiàng),設(shè)(1-3x)n=a0+a1x+a2x2+…+anxn,則a1+a2+…+an的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-1分類加法與分步乘法計(jì)數(shù)原理(解析版) 題型:填空題
某縣從10名大學(xué)畢業(yè)的選調(diào)生中選3個(gè)人擔(dān)任鎮(zhèn)長(zhǎng)助理,則甲、乙至少有1人入選,而丙沒有入選的不同選法的種數(shù)為( )
A.85 B.56 C.49 D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運(yùn)算(解析版) 題型:選擇題
已知集合A={y|y=()x2+1,x∈R},則滿足A∩B=B的集合B可以是( )
A.{0, } B.{x|-1≤x≤1}
C.{x|0<x<} D.{x|x>0}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪考前特訓(xùn):創(chuàng)新問題專項(xiàng)訓(xùn)練2(解析版) 題型:填空題
若對(duì)任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,則稱函數(shù)f(x)為函數(shù)f1(x)到函數(shù)f2(x)在區(qū)間D上的“折中函數(shù)”.已知函數(shù)f(x)=(k-1)x-1,g(x)=0,h(x)=(x+1)ln x,且f(x)是g(x)到h(x)在區(qū)間[1,2e]上的“折中函數(shù)”,則實(shí)數(shù)k的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪考前特訓(xùn):創(chuàng)新問題專項(xiàng)訓(xùn)練1(解析版) 題型:填空題
我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得ln y=φ(x)lnf(x),兩邊求導(dǎo)得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].運(yùn)用此方法可以探求得y=x的單調(diào)遞增區(qū)間是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理配套特訓(xùn):10-9離散型隨機(jī)變量均值方差和正態(tài)分布(解析版) 題型:解答題
某示范性高中的校長(zhǎng)推薦甲、乙、丙三名學(xué)生參加某大學(xué)自主招生考核測(cè)試,在本次考核中只有合格和優(yōu)秀兩個(gè)等級(jí).若考核為合格,授予10分降分資格;考核為優(yōu)秀, 授予20分降分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等級(jí)相互獨(dú)立.
(1)求在這次考核中,甲、乙、丙三名學(xué)生至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名學(xué)生所得降分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:填空題
如圖,一個(gè)封閉的三棱柱容器中盛有水,且側(cè)棱長(zhǎng)AA1=8.若側(cè)面AA1B1B水平放置時(shí),液面恰好經(jīng)過AC,BC,A1C1,B1C1的中點(diǎn). 當(dāng)?shù)酌鍭BC水平放置時(shí),液面高度為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):3-1任意角弧度制及任意角的三角函數(shù)(解析版) 題型:解答題
已知角α終邊經(jīng)過點(diǎn)P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com