【題目】已知為實數(shù),用表示不超過的最大整數(shù).
(1)若函數(shù),求的值;
(2)若函數(shù),求的值域;
(3)若存在且,使得,則稱函數(shù)是函數(shù),若函數(shù) 是函數(shù),求的取值范圍.
【答案】(1)1,2;(2){0,1};(3)且且.
【解析】
(1)根據(jù)取整函數(shù)的定義直接計算;
(2)考慮與之間的大小關(guān)系,從而得到的值域;
(3)對進(jìn)行分類討論:,利用單調(diào)性證明在時不成立,當(dāng)時,再對分類討論:,由此求解出的取值范圍.
(1)f(1.2)=1,f(-1.2)=-2;
(2)因為[]=[]或[]=[]+1
所以若函數(shù)的值域為{0,1}
(3)當(dāng)函數(shù)f(x)=x+是Ω函數(shù)時,
若a=0,則f(x)=x顯然不是Ω函數(shù),矛盾.
若a<0,則是一個增函數(shù),
所以f(x)在(﹣∞,0),(0,+∞)上單調(diào)遞增,
此時不存在m<0,使得f(m)=f([m]),
同理不存在m>0,使得f(m)=f([m]),
又注意到m[m]≥0,即不會出現(xiàn)[m]<0<m的情形,
所以此時f(x)=x+不是Ω函數(shù).
當(dāng)a>0時,設(shè)f(m)=f([m]),所以m+=[m]+,所以有a=m[m],其中[m]≠0,
當(dāng)m>0時,
因為[m]<m<[m]+1,所以[m]2<m[m]<([m]+1)[m],
所以[m]2<a<([m]+1)[m],
當(dāng)m<0時,[m]<0,
因為[m]<m<[m]+1,所以[m]2>m[m]>([m]+1)[m],
所以[m]2>a>([m]+1)[m],
記k=[m],綜上,我們可以得到:a>0且k∈N,a≠k2且a≠k(k+1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記,當(dāng)時,函數(shù)在區(qū)間上有兩個零點(diǎn),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紀(jì)念章從2018年10月1日起開始上市,通過市場調(diào)查,得到該紀(jì)念章每1枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:
上市時間天 | 4 | 10 | 36 |
市場價元 | 90 | 51 | 90 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價與上市時間的變化關(guān)系并說明理由:①;②;③.
(2)利用你選取的函數(shù),求該紀(jì)念章市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有解,求實數(shù)的取值范圍;
(2)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn).下表給出坐標(biāo)的五個點(diǎn)中,有兩個點(diǎn)在上,另有兩個點(diǎn)在上. 則橢圓的方程為_____,的左焦點(diǎn)到的準(zhǔn)線之間的距離為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營公司為了解某地區(qū)用戶對該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數(shù) | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計用戶的滿意度評分的平均數(shù);
(3)若從這100名用戶中隨機(jī)抽取25人,估計滿意度評分低于6分的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,動物園要建造一面靠墻的2間面積相同的矩形熊貓居室,如果可供建造圍墻的材料總長是36m。
(1)把每間熊貓居室的面積s(單位:)表示為寬x(單位:m)的函數(shù),求函數(shù)的解析式,并寫出定義域;
(2)當(dāng)寬為多少時才能使所建造的每間熊貓居室面積最大?每間熊貓居室最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年11月、12月全國大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | 第六周 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個星期的概率;
(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: )
參考數(shù)據(jù): 1092, 498
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在區(qū)間上有最大值4,最小值為0.
(1)求函數(shù)的解析式;
(2)設(shè),若對任意恒成立,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com