3.已知函數(shù)f(x)=sinx,則下列等式成立的是( 。
A.f(-x)=f(x)B.f(2π-x)=f(x)C.f(2π+x)=f(x)D.f(π+x)=f(x)

分析 由條件利用正弦函數(shù)的周期性,可得結(jié)論.

解答 解:∵函數(shù)f(x)=sinx,∴函數(shù)f(x+2π)=sin(x+2π)=sinx=f(x),
故選:C.

點(diǎn)評 本題主要考查正弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn
(1)a1=-4,公差d=2,求滿足${S_{k^2}}={({S_k})^2}$的正整數(shù)k;
(2)求滿足:對于一切正整數(shù)k,都有${({S_k})^2}={S_{k^2}}$成立的所有的無窮等差數(shù)列{an}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.?dāng)?shù)列$1\frac{1}{2},2\frac{1}{4},3\frac{1}{8},4\frac{1}{16},…$的通項(xiàng)公式an可以是( 。
A.${a_n}=n+\frac{1}{2^n}$B.${a_n}=n•\frac{1}{2^n}$C.${a_n}=n+\frac{1}{{{2^{n-1}}}}$D.${a_n}=({n-1})+\frac{1}{{{2^{n-1}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題:
①若$\overrightarrow a$與$\overrightarrow b$共線,則存在唯一的實(shí)數(shù)λ,使$\overrightarrow b$=λ$\overrightarrow a$;
②若向量$\overrightarrow a,\overrightarrow b$所在的直線為異面直線,則向量$\overrightarrow a,\overrightarrow b$一定不共面;
③向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$共面,則它們所在直線也共面;
④若A,B,C三點(diǎn)不共線,O是平面ABC外一點(diǎn).若$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$,則點(diǎn)M一定在平面ABC上,且在△ABC內(nèi)部,
其中正確的命題有②④(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求值$\frac{1}{2}$log24+lg20+lg5=3;$(\frac{4}{9})^{-\frac{1}{2}}$+(lg3)0-$(\frac{27}{8})^{\frac{2}{3}}$+eln2=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若P為△ABC所在平面內(nèi)的一點(diǎn),滿足 $\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,則點(diǎn)P的位置為( 。
A.P在△ABC的內(nèi)部B.P在△ABC的外部
C.P在AB邊所在的直線上D.P在AC邊所在的直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在數(shù)字1,2,3與符號“+”“-”五個元素的所有全排列中,任意兩個數(shù)字都不相鄰的全排列共有( 。
A.48種B.24種C.12種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=alnx,a∈R,若曲線y=f(x)與曲線g(x)=$\sqrt{x}$在交點(diǎn)處有共同的切線,a的值是$\frac{e}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.cosα=$\frac{1}{2}$(x+$\frac{1}{x}$)(x≠0),則α的值為( 。
A.2kπ,k∈ZB.kπ,k∈ZC.2kπ+$\frac{π}{2}$,k∈ZD.kπ+$\frac{π}{2}$,k∈Z

查看答案和解析>>

同步練習(xí)冊答案