已知m∈R,復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.
(Ⅰ)實(shí)數(shù)m取什么值時(shí)?復(fù)數(shù)z為純虛數(shù).
(Ⅱ)實(shí)數(shù)m取值范圍是什么時(shí)?復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第四象限.
【答案】分析:(I)當(dāng)復(fù)數(shù)是一個(gè)純虛數(shù)時(shí),需要實(shí)部等于零而虛部不等于0,
(II)復(fù)平面內(nèi)第四象限的點(diǎn)對(duì)應(yīng)的復(fù)數(shù),得到實(shí)部為正和虛部為負(fù)得出不等關(guān)系,最后解不等式即可.
解答:解:(I)當(dāng)純虛數(shù).
(II)復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.的實(shí)部為m2-5m+6,虛部為m2-3m,
由題意∴當(dāng)m∈(0,2)時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第四象限.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)表示法及其幾何意義、復(fù)數(shù)的意義和基本概念,解題的關(guān)鍵是整理出復(fù)數(shù)的代數(shù)形式的標(biāo)準(zhǔn)形式,針對(duì)于復(fù)數(shù)的基本概念得到實(shí)部和虛部的要滿足的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,復(fù)數(shù)z=
m(m-2)m-1
+(m2+2m-3)i
,若z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,復(fù)數(shù)z=
m-2m-1
+(m2+2m-3)i
,當(dāng)m為何值時(shí).
(1)z∈R;
(2)z是純虛數(shù); 
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.
(Ⅰ)實(shí)數(shù)m取什么值時(shí)?復(fù)數(shù)z為純虛數(shù).
(Ⅱ)實(shí)數(shù)m取值范圍是什么時(shí)?復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,復(fù)數(shù)z=
m(m+2)
m-1
+(m2+2m-3)i
,當(dāng)m為何值時(shí),
(1)z∈R;  (2)z是虛數(shù);  (3)z是純虛數(shù); (4)
.
z
=
1
2
+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,復(fù)數(shù)z=m2+4m+3+(m2+2m-3)i,當(dāng)m=
-1
-1
時(shí),z是純虛數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案