16.已知P為正△ABC內(nèi)部(含邊界)的任意點(diǎn),設(shè)$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則在平面直角坐標(biāo)系內(nèi)點(diǎn)(x,y)對(duì)應(yīng)區(qū)域的面積為$\frac{1}{2}$.

分析 通過已知的向量關(guān)系以及三角形與P的位置,確定x,y的關(guān)系,得到可行域,

解答 解:因?yàn)槿切蜛BC內(nèi)一點(diǎn),且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,
當(dāng)p點(diǎn)在BC上時(shí),x+y=1,
因?yàn)镻在三角形ABC內(nèi).
∴0≤x+y<1
所以0≤x≤1,0≤y≤1,對(duì)應(yīng)的區(qū)域如圖,則面積為$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題以向量為載體,考查線性規(guī)劃的簡單應(yīng)用,抽象出約束條件是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)(1-4i)2的虛部為(  )
A.-4iB.-4C.-8iD.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn).且BF⊥平面ACE.
(1)求證:平面ADE⊥平面BCE;
(2)求二面角E-AC-B的大;
(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sin($\frac{π}{4}$+α)=$\frac{1}{3}$,α是第二象限角,則sin(2α+$\frac{5π}{6}$)=$\frac{4\sqrt{2}-7\sqrt{3}}{18}$或-$\frac{7\sqrt{3}+4\sqrt{2}}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解不等式:
(1)$\sqrt{4x-3}$>1
(2)$\sqrt{4-x}$>a
(3)$\sqrt{4x-3}$-$\sqrt{x-3}$>0
(4)3x-4>$\sqrt{x-3}$
(5)$\sqrt{5-x}$>x-3
(6)$\sqrt{5-4x{-x}^{2}}$≥x
(7)$\sqrt{3x+1}$>$\sqrt{2x-1}$-1
(8)(x-3)(x+1)(x+2)≤0
(9)x(x-$\sqrt{3}$)(x+1)(x+2)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等差數(shù)列{an}中,若2(a3+a4+a5)+3(a9+a11)=42,則S13=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,點(diǎn)M(x,y)的坐標(biāo)滿足不等式組$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,已知N(1,-1),且$\overrightarrow{ON}•\overrightarrow{OM}$的最小值為-1,則實(shí)數(shù)m=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),若此橢圓上一點(diǎn)P滿足|PF2|=|F1F2|,且原點(diǎn)O到直線PF1的距離不超過b,則離心率e的取值范圍是( 。
A.($\frac{1}{3}$,$\frac{{\sqrt{2}}}{2}$]B.(0,$\frac{5}{7}$]C.[$\frac{5}{7}$,1)D.($\frac{1}{3}$,$\frac{5}{7}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.對(duì)定義域分別是Df、Dg的函數(shù)y=f(x),y=g(x),
定義一個(gè)函數(shù)h(x):h(x)=$\left\{\begin{array}{l}{f(x)g(x),當(dāng)x∈{D}_{f}且x∈{D}_{g}}\\{f(x),當(dāng)x∈{D}_{f}且x∉{D}_{g}}\\{g(x),當(dāng)x∉{D}_{f}且x∈{D}_{g}}\end{array}\right.$
(1)若f(x)=$\sqrt{3}$sinx+cosx(x≥0),g(x)=2cosx(x∈R),寫出函數(shù)h(x)的解析式;
(2)在(I)的條件下,若$x∈[\frac{π}{6},\frac{π}{2}]$時(shí),h(x)-1-m≥0恒成立,求m的取值范圍;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f(x),及一個(gè)α的值,使得h(x)=cos2x,并予以證明.

查看答案和解析>>

同步練習(xí)冊答案