某物流公司擬建造如圖所示的有底容器(不計厚度,長度單位:米),其中容器的下端為圓柱形,上端頂蓋為半球形,按照設計要求容器的體積為
112π
3
立方米,且h≥4r.假設該容器的建造費用僅與表面積有關.已知圓柱形部分與底部每平方米建造費用為3千元,半球形部分每平方米建造費用為
15
2
千元.設該容器的建造費用為y千元.
(1)寫出y關于r的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的r.(注:球體積V=
4
3
πr3;球表面積S=4πr2
考點:函數(shù)模型的選擇與應用,函數(shù)解析式的求解及常用方法,組合幾何體的面積、體積問題
專題:導數(shù)的綜合應用
分析:(1)由圓柱和球的體積的表達式,得到h和r的關系.再由圓柱和球的表面積公式建立關系式,將表達式中的l用r表示.并注意到寫定義域時,利用h≥4r,求出自變量r的范圍.
(2)用導數(shù)的知識解決,注意到定義域的限制,在區(qū)間(0,2]中,極值未必存在,將極值點在區(qū)間內(nèi)和在區(qū)間外進行分類討論.
解答: 解:(1)由體積V=
1
2
×
4
3
πr3+πr2h=
112π
3
,解得h=
112-2r3
3r2

∴y=2πrh×3+2πr2×
15
2
=6πr×
112-2r3
3r2
+15πr2
=π•
112+13r3
r
,
又h≥4r,即
112-2r3
3r2
≥4r
,解得0<r≤2.
∴其定義域為(0,2].
(2)由(1)得,y=π•
112+13r3
r
=
112
r
+13r2
=
56
r
+
56
r
+13r2
≥3
3
56
r
×
56
r
×13r2
=4
3637
,
當且僅當r=
2
91
13
∈(0,2]s時取等號.
建造費用最小時r=
2
91
13
點評:利用導數(shù)的知識研究函數(shù)單調(diào)性,函數(shù)最值問題是高考經(jīng)常考查的知識點,同時分類討論的思想也蘊含在其中.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-
54
x
(x≠0)
(1)求x=3處的切線方程;
(2)求f(x) 的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
x2+1

(1)求f(x)的極大值和極小值,并畫出函數(shù)f(x)的草圖
(2)根據(jù)函數(shù)圖象,如果方程f(x)-m=0(m∈R)有且僅有兩個不同的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點O,焦點在x軸上,離心率為
1
2
,點P、A、B在該橢圓上,且P坐標為(2,3),線段AB的中點T在直線OP上,且A、O、B三點不共線.
(1)求橢圓方程;
(2)求直線AB的斜率;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(π-x)-cosx(x∈R).
(1)求f(0)的值;
(2)求函數(shù)f(x)的最小正周期及最大、小值;
(3)若f(α)=
2
α∈(
π
2
,π),求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+x-lnx
(1)當a>0,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥1在x>0時恒成立,求a的取值范圍;
(3)設a=1,b>1,求證:在區(qū)間(1,b)上有唯一的實數(shù)x0,使得f′(x0)=
f(b)-f(1)
b-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+
a-1
x
-lnx-1,其中a>0.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若f(x)≥0對任意x∈[1,+∞)恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}為等差數(shù)列,前n項和為Sn,已知a2=2,S5=15,
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=
an
2n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設計求1+3+5+7+…+31的算法,并畫出相應的程序框圖.

查看答案和解析>>

同步練習冊答案