設(shè)數(shù)列的前項(xiàng)和為,
已知,,,是數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;(2)求;
(3)求滿足的最大正整數(shù)的值.
(1);(2);(3)1
解析試題分析:(1)由可構(gòu)造的遞推式,從而得到通項(xiàng)的遞推式,即可得到通項(xiàng)公式.
(2)由(1)以及數(shù)列,可得到數(shù)列為等差數(shù)列,即可求出通項(xiàng)公式,再根據(jù)等差數(shù)列的前n和公式可得及輪.
(3)由(2)可得.所以由通項(xiàng)即.即可求得的值,再解不等式即可得結(jié)論.
(1) 解:∵當(dāng)時(shí),,
∴
∴
∵,,
∴
∴數(shù)列是以為首項(xiàng),公比為的等比數(shù)列.
∴
(2) 解:由(1)得:,
∴
(3)解:
令>2013/2014,解得:n<1007/1006
故滿足條件的最大正整數(shù)的值為1
考點(diǎn):1.?dāng)?shù)列的前n項(xiàng)和與通項(xiàng)的關(guān)系.2.等差數(shù)列的求和公式.3.不等式的證明.4.通項(xiàng)的思想解決數(shù)列問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和滿足,.
(1)求的通項(xiàng)公式;
(2)求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,前項(xiàng)和滿足條件,
(1)求數(shù)列的通項(xiàng)公式和;(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)都為正數(shù),。
(1)若數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,求;
(2)若,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均為正數(shù)的等比數(shù)列中,.
(1)求公比;
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,.令,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式和;
(2)是否存在正整數(shù),(),使得,,成等比數(shù)列?若存在,求出所有
的,的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中, (為常數(shù),)且成公比不等于1的等比數(shù)列.
(1)求的值;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是首項(xiàng)為,公差為的等差數(shù)列(d≠0),是其前項(xiàng)和.記bn=,
,其中為實(shí)數(shù).
(1) 若,且,,成等比數(shù)列,證明:Snk=n2Sk(k,n∈N+);
(2) 若是等差數(shù)列,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列的前項(xiàng)和滿足,等差數(shù)列滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com