12.正方體12條棱所在直線(xiàn)中成異面直線(xiàn)的有24對(duì).

分析 在正方體ABCD-A1B1C1D1中,與棱AB異面的有CC1,DD1,B1C1,A1D1共4對(duì),正方體ABCD-A1B1C1D1有12條棱,由此能求出異面直線(xiàn)共有多少對(duì).

解答 解:如圖,在正方體ABCD-A1B1C1D1中,
與棱AB異面的有CC1,DD1,B1C1,A1D1共4對(duì),
正方體ABCD-A1B1C1D1有12條棱,
排除兩棱的重復(fù)計(jì)算,
∴異面直線(xiàn)共有12×4×$\frac{1}{2}$=24對(duì).
故答案為:24.

點(diǎn)評(píng) 本題考查異面直線(xiàn)的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意正方體的結(jié)構(gòu)特征的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)m,n是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,m∥β,則α∥βC.若m∥α,n∥α,則m∥nD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)(0,2)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)為(4,0),點(diǎn)(6,3)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)為(m,n),則m+n=$\frac{33}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為CD1中點(diǎn).
(1)求證:EF∥平面ADD1A1;
(2)AB=2,求三棱錐D1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一個(gè)車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,由此進(jìn)行了5次實(shí)驗(yàn),收集數(shù)據(jù)如下:
零件數(shù):x個(gè)1020304050
加工時(shí)間:y分鐘5971758189
由以上數(shù)據(jù)的線(xiàn)性回歸方程估計(jì)加工100個(gè)零件所花費(fèi)的時(shí)間為(  )
附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
A.124分鐘B.150分鐘C.162分鐘D.178分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知曲線(xiàn)f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線(xiàn)的斜率為1,則實(shí)數(shù)a的值為( 。
A.-$\frac{3}{4}$B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知p:函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函數(shù),q:函數(shù)f(x)=xa-2在(0,+∞)上是增函數(shù),則p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知A,B,C是半徑為l的圓O上的三點(diǎn),AB為圓O的直徑,P為圓O內(nèi)一點(diǎn)(含圓周),則$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范圍為[-$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x|+|x+1|.
(1)若?x∈R,恒有f(x)≥λ成立,求實(shí)數(shù)λ的取值范圍;
(2)若?m∈R,使得m2+2m+f(t)=0成立,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案