分析 求導(dǎo)數(shù),利用曲線y=f(x)在x=1處的切線為y=kx,求出a,再確定函數(shù)的單調(diào)性,即可求函數(shù)f(x)的極值.
解答 解:∵f(x)=$\frac{{x}^{2}+2ax}{{e}^{x-1}}$,
∴f′(x)=$\frac{-{x}^{2}+(2-2a)x+2a}{{e}^{x-1}}$,
∵曲線y=f(x)在x=1處的切線為y=kx,
∴f′(1)=1=k,f(1)=1+2a=k,
∴k=1,a=0,
∴f′(x)=$\frac{-x(x-2)}{{e}^{x-1}}$,
令f′(x)>0,可得0<x<2;f′(x)<0,可得x<0或x>2,
∴函數(shù)的單調(diào)遞增區(qū)間是(0,2),單調(diào)遞減區(qū)間是(-∞,0),(2,+∞),
∴x=0時(shí),函數(shù)取得極小值f(0)=0,x=2時(shí),函數(shù)取得極大值$\frac{4}{e}$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查求函數(shù)f(x)的極值,導(dǎo)數(shù)的幾何意義,正確求出a是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 越接近于圓 | B. | 越扁 | ||
C. | 先接近于圓后越扁 | D. | 先越扁后接近于圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | π | C. | $\frac{2π}{3}-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,$\frac{π}{4}$) | B. | (2,$\frac{3π}{4}$) | C. | (2,-$\frac{π}{4}$) | D. | (2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 5π | C. | 6π | D. | 7π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {4} | C. | {2,4} | D. | {2,4,6} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com