分析 (1)由題意,f(2)=4a+2=-6,從而求a,再代入(-2,-2)求b;從而寫出解析式f(x)=$\left\{\begin{array}{l}{-2{x}^{2}+2,x≥0}\\{2x+2,x<0}\end{array}\right.$;
(2)作出f(x)的圖象,從而寫出零點.
解答 解:(1)由題意,f(2)=4a+2=-6,
故a=-2;則f(x)=-2x2+2,x≥0;
則當x<0時,f(-2)=-4+b=-2;
故b=2;
則f(x)=$\left\{\begin{array}{l}{-2{x}^{2}+2,x≥0}\\{2x+2,x<0}\end{array}\right.$------------------------(5分)
(2)作出f(x)的圖象如下圖,
零點是x=±1.-------------(10分)
點評 本題考查了函數的性質與圖象的應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\int_1^2{f(x)dx=28}$ | B. | $\int_2^3{f(x)dx=28}$ | ||
C. | $\int_1^2{2f(x)dx=56}$ | D. | $\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com