9.已知圓的極坐標(biāo)方程為ρ=4sin(θ-$\frac{π}{4}$),則其圓心坐標(biāo)為( 。
A.(2,$\frac{π}{4}$)B.(2,$\frac{3π}{4}$)C.(2,-$\frac{π}{4}$)D.(2,0)

分析 求出圓的直角坐標(biāo)方程,得出圓心的直角坐標(biāo),再化成極坐標(biāo)即可.

解答 解:圓的極坐標(biāo)方程可化為:ρ2=2$\sqrt{2}$ρsinθ-2$\sqrt{2}$ρcosθ,
∴圓的普通方程為x2+y2+2$\sqrt{2}$x-2$\sqrt{2}$y=0,即(x+$\sqrt{2}$)2+(y-$\sqrt{2}$)2=4,
∴圓的圓心的直角坐標(biāo)為(-$\sqrt{2}$,$\sqrt{2}$),化成極坐標(biāo)為(2,$\frac{3π}{4}$).
故選B.

點評 本題考查了極坐標(biāo)與直角坐標(biāo)的互相轉(zhuǎn)化,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的圖象經(jīng)過點$({0,\frac{1}{2}})$,且相鄰兩條對稱軸的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是A,B,C的對邊,若$f({\frac{A}{2}})-cosA=\frac{1}{2}$,bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,cos2$\frac{B}{2}$=$\frac{a+2c}{4c}$(a,b,c分別為角A,B,C的對邊),則△ABC的形狀為( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若(ax+1)5的展開式中x3的系數(shù)是80,則實數(shù)a的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知離心率為e的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,直線l:y=ex+a與x、y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,$\overline{AM}$=λ$\overline{AB}$,P是點F1關(guān)于直線l的對稱點.
(I)當(dāng)λ∈[$\frac{1}{4}$,$\frac{3}{4}$]時,求e的取值范圍;
(Ⅱ)若△PF1F2是等腰三角形,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.正方體ABCD-A1B1C1D1的棱長為6,半徑為$\sqrt{6}$的圓O1在平面A1B1C1D1內(nèi),其圓心O1為正方形A1B1C1D1的中心,P為圓O1上的一個動點,則多面體PABCD的外接球的半徑為$\sqrt{22}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{x}^{2}+2ax}{{e}^{x-1}}$(α∈R,e是自然對數(shù)的底數(shù)),若曲線y=f(x)在x=1處的切線為y=kx(k∈R),求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:滿足不等式x2-4ax+3a2<0(a<0)的實數(shù)x.命題q:滿足不等式x2-x-6≤0的實數(shù)x,已知q是p的必要非充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.向量$\overrightarrow a$,$\overrightarrow b$的夾角是60°,|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則|2$\overrightarrow a$-$\overrightarrow b$|=( 。
A.$\sqrt{13}$B.13C.$\sqrt{7}$D.7

查看答案和解析>>

同步練習(xí)冊答案