13.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+(2a-1)x.
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)a=3時(shí),f(x)=$\frac{1}{3}$x3+3x2+5x,
f′(x)=x2+6x+5=(x+1)(x+5),
令f′(x)>0,解得:x>-1或x<-5,
令f′(x)<0,解得:-5<x<-1,
∴f(x)在(-∞,-5)遞增,在(-5,-1)遞減,在(-1,+∞)遞增,
∴f(x)極大值=f(-5)=$\frac{25}{3}$,f(x)極小值=f(-1)=-$\frac{7}{3}$;
(2)f′(x)=(x+2a-1)(x+1),
a<1時(shí),-2a+1>-1,
令f′(x)>0,解得:x>-2a+1或x<-1,
令f′(x)<0,解得:-1<x<-2a+1,
∴f(x)在(-∞,-1)遞增,在(-1,-2a+1)遞減,在(-2a+1,+∞)遞增,
a=1時(shí),f′(x)≥0,f(x)在R遞增,
a>1時(shí),-2a+1<-1,
令f′(x)>0,解得:x<-2a+1或x>-1,
令f′(x)<0,解得:-2a+1<x<-2a+1,
∴f(x)在(-∞,-2a+1)遞增,在(-2a+1,-1)遞減,在(-1,+∞)遞增.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在平面內(nèi),定點(diǎn)A,B,C,D滿足|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,動(dòng)點(diǎn)P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最大值是$\frac{49}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.近兩年來(lái),各大電視臺(tái)都推出了由明星參與的游戲競(jìng)技類節(jié)目.高一某研究性學(xué)習(xí)小組在長(zhǎng)沙某社區(qū)對(duì)50人進(jìn)行第一時(shí)間收看該類節(jié)目與性別是否有關(guān)的收視調(diào)查,其中20名女性中有15名第一時(shí)間收看該類節(jié)目,30名男性中10名第一時(shí)間收看該類節(jié)目.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表,并判斷第一時(shí)間收看該類節(jié)目是否與性別有關(guān)?
(2)該研究性學(xué)習(xí)小組共有A、B、C、D和E五名同學(xué),五人分成兩組模擬“撕名牌”的游戲,其中一組三人,一組兩人,求A、B兩同學(xué)分在同一組的概率.
參考數(shù)據(jù):${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
臨界值表:
P(Χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知△ABC中,D為BC的中點(diǎn),若∠B=75°,$∠ADC={150°},BD=\sqrt{6}+\sqrt{2}$,則△ABC的周長(zhǎng)為6+2($\sqrt{6}+\sqrt{2}+\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)對(duì)x∈[0,1]恒成立,則實(shí)數(shù)a的取值范圍為[$-\frac{23}{27}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知p:x2-8x-20>0,q:x2-2x+1-a2>0(a>0).若¬q是¬p的充分而不必要條件,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.由半橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(x≥0)與半橢圓$\frac{{y}^{2}}{^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x≤0)合成的曲線稱作“果圓”,如圖所示,其中a2=b2+c2,a>b>c>0.由右橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(x≥0)的焦點(diǎn)F0和左橢圓$\frac{{y}^{2}}{^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x≤0)的焦點(diǎn)F1,F(xiàn)2確定的△F0F1F2叫做果圓的焦點(diǎn)三角形,若果圓的焦點(diǎn)三角形為銳角三角形,則右橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(x≥0)的離心率的取值范圍為( 。
A.($\frac{1}{3}$,1)B.($\frac{\sqrt{2}}{3}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過(guò)拋物線y2=4x的焦點(diǎn)F,且傾斜角為30°的直線與拋物線交于A,B兩點(diǎn),則以AB為直徑的圓的標(biāo)準(zhǔn)方程是(x-7)2+(y-2$\sqrt{3}$)2=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b橢圓的面積為πab,則$\int_{-3}^3{\sqrt{1-\frac{x^2}{9}}}dx$=( 。
A.B.C.D.$\frac{3π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案