分析 由|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,可設(shè):D(0,0),A(2,0),B(-1,$\sqrt{3}$),C(-1,-$\sqrt{3}$).由動(dòng)點(diǎn)P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,可設(shè):P(2+cosθ,sinθ).M$(\frac{1+cosθ}{2},\frac{sinθ-\sqrt{3}}{2})$.再利用向量坐標(biāo)運(yùn)算性質(zhì)、模的計(jì)算公式即可得出.
解答 解:∵|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,
∴可設(shè):D(0,0),A(2,0),B(-1,$\sqrt{3}$),C(-1,-$\sqrt{3}$),
動(dòng)點(diǎn)P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,
可設(shè):P(2+cosθ,sinθ).M$(\frac{1+cosθ}{2},\frac{sinθ-\sqrt{3}}{2})$.
∴$\overrightarrow{BM}$=$(\frac{3+cosθ}{2},\frac{sinθ-3\sqrt{3}}{2})$.
則|$\overrightarrow{BM}$|2=$(\frac{3+cosθ}{2})^{2}$+$(\frac{sinθ-3\sqrt{3}}{2})^{2}$
=$\frac{37+12sin(\frac{π}{6}-θ)}{4}$≤$\frac{49}{4}$,當(dāng)且僅當(dāng)$sin(\frac{π}{6}-θ)$=1時(shí)取等號(hào).
故答案為:$\frac{49}{4}$.
點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、模的計(jì)算公式、數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | (1,2] | C. | (1,18] | D. | [0,1]∪(1,18] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 105° | C. | 15°或105° | D. | 45°或135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com