【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

【答案】(1);(2).

【解析】

試題分析:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為,將題中所給的項(xiàng),通過解方程組的方法,求首項(xiàng)和公比,寫成數(shù)列的通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,可知,當(dāng)時(shí),,所以求的和時(shí),可先分時(shí),,當(dāng)時(shí),,采用分組轉(zhuǎn)化求和,最后驗(yàn)證是否成立.

試題解析:(1)設(shè)數(shù)列的公比為,則.................2分

成等差數(shù)列,即,............4分

............................ 6分

(2)當(dāng)時(shí),..................... 8分

當(dāng)時(shí),

.....................11分

又當(dāng)時(shí),上式也滿足.

當(dāng)時(shí),.......................12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱,側(cè)棱與底面垂直,,分別是,的中點(diǎn).

)求證:平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg乙材料90kg,求在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤之和的最大值(元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0,則下列四個(gè)命題: ①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列 是遞增數(shù)列;
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過橢圓的右焦點(diǎn)作直線,使,又交于點(diǎn),設(shè)直線與橢圓的兩個(gè)交點(diǎn)由上至下依次為, . 

(1)若所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線yx3,求:

(1)曲線在點(diǎn)P(1,1)處的切線方程;

(2)過點(diǎn)P(1,0)的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【廣東省佛山市2017屆高三4月教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)文】已知橢圓 )的焦距為4,左、右焦點(diǎn)分別為、,且與拋物線 的交點(diǎn)所在的直線經(jīng)過.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線交于 兩點(diǎn),與拋物線無公共點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案