已知函數(shù)在處取得極值.
(I)求與滿足的關(guān)系式;
(II)若,求函數(shù)的單調(diào)區(qū)間;
(III)若,函數(shù),若存在,,使得
成立,求的取值范圍.
(Ⅰ). (Ⅱ)單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為. (Ⅲ)的取值范圍是.
【解析】本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查恒成立問題,解題的關(guān)鍵是正確求導(dǎo),確定分類標準,利用函數(shù)的最值解決恒成立問題。
(Ⅰ)求導(dǎo)函數(shù),利用函數(shù)在x=1處取得極值,可得a與b滿足的關(guān)系式;
(Ⅱ)確定函數(shù)f(x)的定義域,求導(dǎo)函數(shù),確定分類標準,從而可得函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當a>3時,確定f(x)在上的最大值,g(x)在上的最小值,要使存在m1,m2∈[
使得|f(m1)-g(m2)|<9成立,只需要|f(x)max-g(x)min|<9,即可求得a的取值范圍.
科目:高中數(shù)學(xué) 來源:2013屆度江西南昌二中高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)已知函數(shù)在處取得極值.
(1) 求;
(2 )設(shè)函數(shù),如果在開區(qū)間上存在極小值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省畢節(jié)市高三上學(xué)期第三次月考理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù)=在處取得極值.
(1)求實數(shù)的值;
(2) 若關(guān)于的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省高三第一次月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分) 已知函數(shù)在處取得極值。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求證:對于區(qū)間上任意兩個自變量的值,都有;
(Ⅲ)若過點可作曲線的三條切線,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳鐵一中高三第三次月考文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)為實數(shù)。
(Ⅰ)已知函數(shù)在處取得極值,求的值;
(Ⅱ)已知不等式對任意都成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省高三第二階段考試數(shù)學(xué)理卷 題型:解答題
(12分)已知函數(shù)在處取得極值.
(Ⅰ)求實數(shù)的值;[來源:學(xué)+科+網(wǎng)]
(Ⅱ)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com