16.已知函數(shù)f(x)=sin(2x-$\frac{π}{2}$),下列結(jié)論錯誤的是( 。
A.f(x)的最小正周期為πB.f(x)在區(qū)間$[{0,\frac{π}{2}}]$上是增函數(shù)
C.f(x)的圖象關(guān)于點$({-\frac{3π}{4},0})$對稱D.f(x)的圖象關(guān)于直線$x=\frac{5π}{4}$對稱

分析 利用余弦函數(shù)的周期性、單調(diào)性、以及圖象的對稱性,得出結(jié)論.

解答 解:對于知函數(shù)f(x)=sin(2x-$\frac{π}{2}$),它的周期為$\frac{2π}{2}$=π,故A正確;
在區(qū)間$[{0,\frac{π}{2}}]$上,2x-$\frac{π}{2}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],函數(shù)f(x)為增函數(shù),故B正確;
當(dāng)x=-$\frac{3π}{4}$,f(x)=sin(-2π)=0,故f(x)的圖象關(guān)于點$({-\frac{3π}{4},0})$對稱,故C正確;
當(dāng)$x=\frac{5π}{4}$ 時,f(x)=sin2π=0,故f(x)的圖象不關(guān)于直線$x=\frac{5π}{4}$對稱,故D錯誤,
故選:D.

點評 本題主要考查余弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={(x,y)|x2+y2=16,x∈Z,y∈Z},則集合A的子集個數(shù)為( 。
A.8B.32C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx
(Ⅰ)當(dāng)a=0時,若函數(shù)f(x)在其圖象上任意一點A處的切線斜率為k,求k的最小值,并求此時的切線方程;
(Ⅱ)若函數(shù)f(x)的極大值點為x1,證明:x1lnx1-ax12>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,若a=$\sqrt{3}$,則bcosC+ccosB=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.Sn是等比數(shù)列{an}的前n項和,若S2,S4,S3成等差數(shù)列,則數(shù)列{an}的公比q等于(  )
A.$\frac{1}{2}$B.2C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)g(x)=f(x)-x是偶函數(shù),且f(3)=4,則f(-3)=( 。
A.-4B.-2C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等差數(shù)列{an}的公差不為零,且a2+a3=a6,則$\frac{{{a_1}+{a_2}}}{{{a_3}+{a_4}+{a_5}}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={0,2a},N={a,b},若M∩N={2},則M∪N=( 。
A.{0,2,3}B.{1,2,3}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)數(shù)列{an}的前n項和Sn滿足Sn=2an-a1,且a3,a2+1,a1成等差數(shù)列.若log2an+1≤71,則n的最大值等于( 。
A.67B.68C.69D.70

查看答案和解析>>

同步練習(xí)冊答案