精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

       已知半圓,動圓與此半圓相切且與軸相切。

   (1)求動圓圓心的軌跡,并畫出其軌跡圖形;

   (2)是否存在斜率為的直線,它與(1)中所得軌跡的曲線由左到右順次交于A、B、C、D四點,且滿足。若存在,求出的方程;若不存在,說明理由。

(1)動圓圓心的軌跡方程為

(2)這樣的直線不存在


解析:

(1)設動圓圓心為,做軸交軸于N。 1分

       若兩圓外切,,

       所以

       化簡得   3分

       若兩圓內切,,

       所以,

       化簡得   4分

       綜上,動圓圓心的軌跡方程為

       及,

       其圖象是兩條拋物線位于軸上方的部分,作簡圖如圖:   6分

(2)設直線存在其方程可設為

       依題意,它與曲線交于A,D,

       與曲線交于B,C   7分

       由

       得   9分

      

            10分

      

       即   11分

       解得

       將代入方程

       得

       因為曲線中橫坐標范圍為(-∞,-2)∪(2,+∞),

       所以這樣的直線不存在    12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案