7.已知集合A={(x,y)|2x-y=0},B={(x,y)|3x+y=0},則A∩B={(0,0)}.

分析 聯(lián)立兩個直線方程求出方程組的解,由交集的運算即可求出A∩B.

解答 解:由$\left\{\begin{array}{l}{2x-y=0}\\{3x+y=0}\end{array}\right.$得,解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,
由題意可得,A∩B={(0,0)},
故答案為:{(0,0)}.

點評 本題考查了交集及其運算,注意集合中的元素,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)Sn是數(shù)列{an}的前n項和,a1=-1,an+1=SnSn+1,則Sn=-$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.把紅、黑、白、藍4張紙牌隨機地分給甲、乙、丙、丁4個人,每個人分得1張,事件“甲分得紅牌”與“乙分得紅牌”是③.(請?zhí)钊胝_的序號)
①對立事件     ②不可能事件  ③互斥但不對立事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)計算C104-C73A33;
(2)解關(guān)于x的方程:3A8x=4A9x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某班級有50名學(xué)生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93
①這種抽樣方法是一種分層抽樣;
②這種抽樣方法是一種系統(tǒng)抽樣;
③這五名男生成績的方差大于這五名女生成績的方差;
④該班男生成績的平均數(shù)小于該班女生成績的平均數(shù),則以上說法一定正確的是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)y=-x2+2x+3
(1)求出該二次函數(shù)圖象的頂點坐標(biāo)和對稱軸;
(2)在所給坐標(biāo)系中畫出二次函數(shù)y═-x2+2x+3的圖象.
(3)觀察圖象,當(dāng)y>0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l經(jīng)過 A(1,-1)、B(0,-2)兩點,
(1)求直線l的方程;
(2)若直線l被圓C:(x-a)2+y2=4所截,截得的弦長為$2\sqrt{2}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如果冪函數(shù)f(x)=xa的圖象經(jīng)過點(2,$\frac{{\sqrt{2}}}{2}$),則f(4)的值等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足an+2-2an+1+an=0(a∈N*),a3=5,其前7項和為42,設(shè)數(shù)列{bn}是等比數(shù)列,b1=a1-1,b2=a4
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=1+log3$\frac{_{n}}{2}$,dn=$\frac{1}{{c}_{n}{c}_{n+1}}$,求數(shù)列{dn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案