4.已知橢圓C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左、右焦點分別為F1,F(xiàn)2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于直線l1于點P,線段PF2的垂直平分線與l1的交點的軌跡為曲線C2,若點Q是C2上任意的一點,定點A(4,3),B(1,0),則|QA|+|QB|的最小值為( 。
A.6B.3$\sqrt{3}$C.4D.5

分析 由題意可知設(shè)l2:y=t,設(shè)P(-1,t),(t∈R),M(x,y),則y=t,且|MP|=|MF2|,(x+1)2=(x-1)2+y2,化簡可得:曲線C2:y2=4x,根據(jù)拋物線的定義可知:,當A,Q,Q′三點共線時,|QA|+|QQ′丨取最小值,即可求得|QA|+|QB|的最小值.

解答 解:∵圓C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左右焦點為F1,F(xiàn)2,
∴F1(-1,0),F(xiàn)2(1,0),直線l1:x=-1,
設(shè)l2:y=t,設(shè)P(-1,t),(t∈R),M(x,y),
則y=t,且|MP|=|MF2|,
∴(x+1)2=(x-1)2+y2,
∴曲線C2:y2=4x,
則B(1,0)為曲線C2:y2=4x焦點,
過Q做QQ′垂直于曲線C2的準線,
由拋物線的定義可知:丨QQ′丨=丨QB丨,
|QA|+|QB|=|QA|+|QQ′丨,當A,Q,Q′三點共線時,|QA|+|QQ′丨取最小值,
則Q′(-1,3),則|QA|+|QQ′丨的最小值為4-(-1)=5,
∴|QA|+|QB|的最小值5,
故選D.

點評 本題考查橢圓的標準方程,曲線軌跡方程的求法,拋物線的定義,考查數(shù)形結(jié)合思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}sinα-cosα}\\{y=3-2\sqrt{3}sinαcosα-2co{s}^{2}α}\end{array}\right.$ (α為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系.曲線C2的極坐標方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)若曲線C1與曲線C2有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計結(jié)果如表:
甲流水線樣本的頻數(shù)分布表
產(chǎn)品重量(克)頻數(shù)
[490,495)6
[495,500)8
[500,505)14
[505,510)8
[510,515]4
(1)求甲流水線樣本合格的頻率;
(2)從乙流水線上重量值落在[505,515]內(nèi)的產(chǎn)品中任取2個產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.現(xiàn)有4名男生、3名女生站成一排照相.(結(jié)果用數(shù)字表示)
(1)女生甲不在排頭,女生乙不在排尾,有多少種不同的站法?
(2)女生不相鄰,有多少種不同的站法?
(3)女生甲要在女生乙的右方,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.
(1)求r的值;
(2)當b=2時,記${b_n}=2({log_3}{a_n}+1)(n∈{N^*})$,證明:對任意的n∈N*,不等式$\frac{{{b_1}+1}}{b_1}•\frac{{{b_2}+1}}{b_2}•…•\frac{{{b_n}+1}}{b_n}>\sqrt{n+1}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為60o的兩個單位向量,則$\overrightarrow a$=2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$夾角為( 。
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=x3-3x,若對于區(qū)間[-3,2]上任意的x1,x2都有|f(x1)-f(x2)|≤t,則實數(shù)t的最小值是20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知全集U={1,2,3,4,5,6},M={2,3,4},N={4,5},則∁U(M∪N)=(  )
A.{1,3,5}B.{2,4,6}C.{1,5}D.{1,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項和Sn=an2+bn(a,b∈R)且a2=3,a6=11,則S7等于( 。
A.13B.35C.49D.63

查看答案和解析>>

同步練習冊答案