數(shù)列{an}的前n的和Sn,且3tSn-(2t+3)Sn-1=3t,其中t>0,n∈N*,n≥2.nnnn
(1)求證:數(shù)列{an}是等比數(shù)列.
(2)設數(shù)列{an}的公比為f(t),數(shù)列b1=1,bn=f(
1
bn-1
)(n≥2)
,求數(shù)列{bn}的通項.
(3)記Tn=b1b2-b2b3+b3b4-b4b5+…-b2nb2n+1,求證:Tn≤-
20
9
考點:數(shù)列與不等式的綜合,等比關系的確定,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)由已知3tSn-(2t+3)Sn-1=3t,可得3tsn-1-(2t+3)sn-2=3t,兩式相減可得數(shù)列an與an-1的遞推關系,從而可證.
(2)由(1)可得f(t),代入整理可得bn-bn-1=
2
3
,利用等差數(shù)列的通項公式可求.
(3)把所求式兩項結合,分組求和,即可得出結論.
解答: (1)證明:∵3tsn-(2t+3)sn-1=3t∴3tsn-1-(2t+3)sn-2=3t(n>2)
兩式相減可得3t(sn-sn-1)-(2t+3)(sn-1-sn-2)=0
整理可得3tan=(2t+3)an-1(n≥3)
an
an-1
=
2t+3
3t

∵a1=1,∴a2=
2t+3
3t
,
a2
a1
=
2t+3
3t

∴數(shù)列{an}是以1為首項,以
2t+3
3t
為公比的等比數(shù)列;
(2)解:由(1)可得f(t)=
2t+3
3t

在數(shù)列{bn}中,bn=f(
1
bn-1
)=
2•
1
bn-1
+3
3•
1
bn-1
=bn-1+
2
3
,
∴bn-bn-1=
2
3

∴數(shù)列{bn}以1為首項,以
2
3
為公差的等差數(shù)列
∴bn=1+(n-1)×
2
3
=
2
3
n+
1
3
;
(3)證明:Tn=b1b2-b2b3+b3b4-b4b5+…-b2nb2n+1=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1
=-
4
3
(b2+b4+…+b2n)=-
4
3
2
3
n2
+n)≤-
20
9
點評:本題主要考查了利用遞推關系實現(xiàn)數(shù)列和與項的相互轉化,進而求通項公式,等差數(shù)列的通項公式的運用,數(shù)列的求和.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若lg2=a,lg3=b,則log26=( 。
A、
2b
a
B、
b
a
C、
a+b
a
D、
a+b
a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an},滿足a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
a1
+
1
a2
+…+
1
an
,?n∈N*,m∈[-1,1]
,t2-2mt-
15
2
bn
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,直線l:y=
3
與橢圓C相切.
(1)求橢圓C的方程;
(2)設AB是橢圓C上兩個動點,點P(-1,
3
2
)滿足
PA
+
PB
PO
(0<λ<4且λ≠2),求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標xOy中,不等式組
-1≤x≤2
0≤y≤2
表示的平面區(qū)域為W,從區(qū)域W中隨機任取一點M(x,y).
(1)若x∈R,y∈R,求|OM|≥1的概率;
(2)若x∈Z,y∈Z,求點M位于第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2(x-a)(a∈R),
(Ⅰ)當a=3時,求f(x)的極值點;
(Ⅱ)若存在x0∈[1,2]時,使得不等式f(x0)<-1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(Ⅰ)求異面直線AD1與BD所成的角的余弦值;
(Ⅱ)求直線B1C1與平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一枚質地均勻且四個面上分別標有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為x,第二次朝下面的數(shù)字為y.用(x,y)表示一個基本事件.
(Ⅰ)請寫出所有的基本事件;
(Ⅱ)求滿足條件“
x
y
為整數(shù)”的事件的概率;
(Ⅲ)求滿足條件“x-y<2”的事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}前n項和Sn,且Sn=2an-2,令bn=log2an
(Ⅰ)試求數(shù)列{an}的通項公式;
(Ⅱ)設cn=
bn
an
,求證數(shù)列{cn}的前n項和Tn<2.

查看答案和解析>>

同步練習冊答案