考點:數(shù)列與不等式的綜合,等比關系的確定,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)由已知3tS
n-(2t+3)S
n-1=3t,可得3ts
n-1-(2t+3)s
n-2=3t,兩式相減可得數(shù)列a
n與a
n-1的遞推關系,從而可證.
(2)由(1)可得f(t),代入整理可得b
n-b
n-1=
,利用等差數(shù)列的通項公式可求.
(3)把所求式兩項結合,分組求和,即可得出結論.
解答:
(1)證明:∵3ts
n-(2t+3)s
n-1=3t∴3ts
n-1-(2t+3)s
n-2=3t(n>2)
兩式相減可得3t(s
n-s
n-1)-(2t+3)(s
n-1-s
n-2)=0
整理可得3ta
n=(2t+3)a
n-1(n≥3)
∴
=
,
∵a
1=1,∴a
2=
,
∴
=
∴數(shù)列{a
n}是以1為首項,以
為公比的等比數(shù)列;
(2)解:由(1)可得f(t)=
.
在數(shù)列{b
n}中,b
n=f(
)=
=b
n-1+
,
∴b
n-b
n-1=
∴數(shù)列{b
n}以1為首項,以
為公差的等差數(shù)列
∴b
n=1+(n-1)×
=
n+
;
(3)證明:T
n=b
1b
2-b
2b
3+b
3b
4-b
4b
5+…-b
2nb
2n+1=b
2(b
1-b
3)+b
4(b
3-b
5)+…+b
2n(b
2n-1-b
2n+1)
=-
(b
2+b
4+…+b
2n)=-
(
n2+n)≤-
.
點評:本題主要考查了利用遞推關系實現(xiàn)數(shù)列和與項的相互轉化,進而求通項公式,等差數(shù)列的通項公式的運用,數(shù)列的求和.