如圖,一塊半徑為1,圓心角為的扇形木板OPQ,現(xiàn)要用其截出一塊面積最大的矩形木板,下面提供了兩種截出方案,試比較兩種方案截出的最大矩形面積哪個最大?請說明理由.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖P1是一塊半徑為1的半圓形紙板,在P1的左下端剪去一個半徑為
1
2
的半圓后得到圖形P2,然后依次剪去一個更小半圓(其直徑為前一個被剪掉半圓的半徑)得圓形P3、P4、…、Pn…,記紙板Pn的面積為Sn,則
lim
n→∞
Sn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊半徑為1的半圓形鋼板,計劃剪成矩形ABCD的形狀,它的一邊AB在圓O的直徑上,另一邊CD的端點在圓周上.求矩形ABCD面積的最大值和周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖P1是一塊半徑為1的半圓形紙板,在P1的左下端剪去一個半徑為
1
2
的半圓后得到圖形P2,然后依次剪去一個更小半圓(其直徑為前一個被剪掉半圓的半徑)得圓形P3,P4,…,Pn,…,記紙板Pn的面積為Sn,則Sn=
π
2
[1-
1-(
1
4
)
n-1
3
]
π
2
[1-
1-(
1
4
)
n-1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)如圖,在半徑為20cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點A、B在直徑上,點C、D在圓周上.
(1)請你在下列兩個小題中選擇一題作答即可:
①設(shè)∠BOC=θ,矩形ABCD的面積為S=g(θ),求g(θ)的表達(dá)式,并寫出θ的范圍.
②設(shè)BC=x(cm),矩形ABCD的面積為S=f(x),求f(x)的表達(dá)式,并寫出x的范圍.
(2)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積.

查看答案和解析>>

同步練習(xí)冊答案