已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,且過雙曲線的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、是雙曲線上關(guān)于它的中心對稱的任意兩點(diǎn), 為該雙曲線上的動點(diǎn),若直線、均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關(guān)于橢圓的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程(,不同時為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
(1).
(2)關(guān)于橢圓的正確命題是:設(shè)、是橢圓上關(guān)于它
的中心對稱的任意兩點(diǎn),為該橢圓上的動點(diǎn),若直線、均存在斜率,
則它們的斜率之積為定值.(定值)
(3)關(guān)于方程(,不同時為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題是:
設(shè)、是方程(,不同時為負(fù)數(shù))的曲線上關(guān)于它的中心對稱的任意兩點(diǎn),為該曲線上的動點(diǎn),若直線、均存在斜率,則它們的斜率之積為定值.
解析試題分析:(1)設(shè)橢圓的方程為,半焦距為,
則,,
橢圓的方程為.
(2)關(guān)于橢圓的正確命題是:設(shè)、是橢圓上關(guān)于它
的中心對稱的任意兩點(diǎn),為該橢圓上的動點(diǎn),若直線、均存在斜率,
則它們的斜率之積為定值.
證明如下:
設(shè)點(diǎn),,,
直線、的斜率分別為,
則,
點(diǎn),在橢圓上,
,且,
, 即,
所以,(定值)
(3)關(guān)于方程(,不同時為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題是:
設(shè)、是方程(,不同時為負(fù)數(shù))的曲線上關(guān)于它的中心對稱的任意兩點(diǎn),為該曲線上的動點(diǎn),若直線、均存在斜率,則它們的斜率之積為定值.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)注意將斜率用坐標(biāo)表示出來,易于發(fā)現(xiàn)關(guān)系。本題得到一般性結(jié)論,對指導(dǎo)學(xué)生學(xué)習(xí)探究很有裨益。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標(biāo)原點(diǎn)),求的值;
(Ⅲ) 設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(與不重合),且直線與軸交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點(diǎn),求弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓.
(Ⅰ)設(shè)橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線相交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線,
(1)化的方程為普通方程,并說明它們分別表示什么曲線?
(2)若上的點(diǎn)P對應(yīng)的參數(shù)為,Q為上的動點(diǎn),求PQ的中點(diǎn)M到直線的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線和與橢圓的交點(diǎn)分別為、和、,為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為、.
(i)證明:;
(ii)問直線上是否存在點(diǎn),使得直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、分別為橢圓:的上、下焦點(diǎn),其中也是拋物線: 的焦點(diǎn),點(diǎn)是與在第二象限的交點(diǎn),且。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)(1,3)和圓:,過點(diǎn)的動直線與圓相交于不同的兩點(diǎn),在線段取一點(diǎn),滿足:,(且)。
求證:點(diǎn)總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的右焦點(diǎn)為,右準(zhǔn)線為,離心率為,點(diǎn)在橢圓上,以為圓心,為半徑的圓與的兩個公共點(diǎn)是.
(1)若是邊長為的等邊三角形,求圓的方程;
(2)若三點(diǎn)在同一條直線上,且原點(diǎn)到直線的距離為,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左右焦點(diǎn)分別為、,由4個點(diǎn)、、和組成一個高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點(diǎn)的直線和橢圓交于、兩點(diǎn),求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com