如圖,已知橢圓過點,離心率為,左、右焦點分別為、.點為直線上且不在軸上的任意一點,直線與橢圓的交點分別為、、,為坐標原點.設(shè)直線、的斜率分別為

(i)證明:;
(ii)問直線上是否存在點,使得直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.


(1)根據(jù)橢圓的方程以及斜率公式來得到求解。
(2)點的坐標為  

解析試題分析:(i).橢圓方程為,、 設(shè)
,      2分
(ii)記A、B、C、D坐標分別為、、、
設(shè)直線    
聯(lián)立可得              4分

,代入,可得
                            6分
同理,聯(lián)立和橢圓方程,可得             7分
(由(i)得)可解得,或,所以直線方程為,
所以點的坐標為                      10分
考點:橢圓方程
點評:主要是考查了直線與橢圓的位置關(guān)系,以及運用韋達定理求解斜率和,進而得到直線的方程,得到點P的坐標,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系曲線C的極坐標方程為cos()=1,M,N分別為C與x軸,y軸的交點。
(I)寫出C的直角坐標方程,并求M,N的極坐標;
(II)設(shè)MN的中點為P,求直線OP的極坐標方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知焦距為的雙曲線的焦點在x軸上,且過點P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點、的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標;
(2)過點的直線與橢圓交于兩點、,當的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,離心率為,且過雙曲線的頂點.
(1)求橢圓的標準方程;
(2)命題:“設(shè)、是雙曲線上關(guān)于它的中心對稱的任意兩點, 為該雙曲線上的動點,若直線均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關(guān)于橢圓的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程,不同時為負數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)圓C與兩圓,中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)設(shè)直線l是圓O:在P(x0,y0)(x0y0 ≠ 0)處的切線,且P在圓上,l與軌跡L相交不同的A,B兩點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

曲線,曲線.自曲線上一點的兩條切線切點分別為.

(1)若點的縱坐標為,求;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,動點到兩點,的距離之和等于,設(shè)點的軌跡為曲線,直線過點且與曲線交于,兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案