過點A(-2,m)和B(m,4)的直線與直線l:x-2y-1=0垂直,則m的值為( 。
A、10B、2C、0D、-8
考點:直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:由直線方程可得斜率,進(jìn)而又垂直關(guān)系和斜率公式可得m的方程,解方程可得.
解答: 解:∵直線l:x-2y-1=0的斜率為
1
2

由直線的垂直關(guān)系可得AB的斜率為-2,
∴由斜率公式可得
m-4
-2-m
=-2,
解得m=-8
故選:D
點評:本題考查直線的一般式方程和垂直關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若A:B:C=1:2:3,則a:b:c=(  )
A、1:2:3
B、2:3:4
C、3:4:5
D、1:
3
:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對數(shù)lg(
3+
5
+
3-
5
)
的值為(  )
A、1
B、
1
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義域分別是Df、Dg的函數(shù)y=f (x)、y=g (x),規(guī)定:h(x)=
f(x)•g(x), 當(dāng)x∈Df且x∈Dg
 f(x) ,當(dāng)x∈Df且x∉Dg
 g(x) ,當(dāng)x∉Df且x∈Dg.

(1)若函數(shù)f (x)=
1
x-1
,g (x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)請設(shè)計一個定義域為R的函數(shù)y=f (x),及一個實常數(shù)a的值,使得f (x)•f (x+a)=x4+x2+1,并予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品降價10%,經(jīng)過一段時間后恢復(fù)原價,需提價
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)在區(qū)間(-1,1)上是減函數(shù),且f(1-a)<f(2a-1),則a的取值范圍為( 。
A、(
2
3
,+∞)
B、(-∞,
2
3
)
C、(0,
2
3
)
D、(
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程ax2-2x+1=0的解集中有且僅有一個元素,則實數(shù)a的值組成的集合中的元素個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?ABCD的頂點A(-3,-2),B(3,-4),C(6,0).
(Ⅰ)求頂點D的坐標(biāo);
(Ⅱ)求
AB
AD
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線x+ky-1=0所經(jīng)過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為3.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
i.求證:點M恒在橢圓C上;
ii.求△AMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案