等差數(shù)列{an}前n項(xiàng)的和為Sn,已知公差d=
1
2
,a1+a3+…a99=60,則S100等于( 。
A、170B、150
C、145D、120
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等差數(shù)列的性質(zhì)易求偶數(shù)項(xiàng)和為85,由此能求出S100=145.
解答: 解:等差數(shù)列{an}前n項(xiàng)的和為Sn,
∵公差d=
1
2
,a1+a3+…+a99=60,
∴a2+a4+…+a100=60+
1
2
×50
=85,
∴S100=60+85=145.
故選:C.
點(diǎn)評(píng):本題考查等差數(shù)列的前100項(xiàng)的值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的前n項(xiàng)和公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一支游泳隊(duì)有男運(yùn)動(dòng)員32人,女運(yùn)動(dòng)員24人,若用分層抽樣的方法從該隊(duì)的全體運(yùn)動(dòng)員中抽取一個(gè)容量為14的樣本,則抽取男運(yùn)動(dòng)員的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從甲、乙兩個(gè)城市分別隨機(jī)抽取6臺(tái)自動(dòng)售貨機(jī),對(duì)其銷(xiāo)售額進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖所示),設(shè)甲、乙兩組數(shù)據(jù)的平均數(shù)分別為
.
x
.
x
,方差分別為m,m,則( 。
A、
.
x
.
x
,m>m
B、
.
x
.
x
,m<m
C、
.
x
.
x
,m>m
D、
.
x
.
x
,m<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a,b>0)拋物線(xiàn)y2=4x共焦點(diǎn),雙曲線(xiàn)與拋物線(xiàn)的一公共點(diǎn)到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為2,雙曲線(xiàn)的離心率為e,則2e-b2的值是( 。
A、
2
+1
B、2
2
-2
C、4-2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列等式中,成立的是( 。
A、sin(
π
2
-x)=cos(
π
2
-x)
B、sin(x+2π)=sinx
C、sin(2π+x)=-sinx
D、cos(π+x)=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“存在x∈R,使得x2+sinx-1≥0”的否定為(  )
A、對(duì)任意的x∈R,x2+sinx-1≥0
B、不存在x∈R,使得x2+sinx-1≤0
C、存在x∈R,使得x2+sinx-1<0
D、對(duì)任意的x∈R,使得x2+sinx-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)i(2+3i)對(duì)應(yīng)點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三角形ABC的頂點(diǎn)A(
3
,1),B(3
3
,1),頂點(diǎn)C在第一象限,若點(diǎn)M(x,y)在△ABC的內(nèi)部或邊界,則z=
OA
OM
取最大值時(shí),3x2+y2有( 。
A、定值52B、定值82
C、最小值52D、最小值50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinx+cosx=
5
13
2
,且x∈(
π
4
,
4
).
(1)求cosx;
(2)求
1-tanx
1+tanx

查看答案和解析>>

同步練習(xí)冊(cè)答案