20.設(shè)函數(shù)f(x)與g(x)的定義域?yàn)镽,且f(x)單調(diào)遞增,F(xiàn)(x)=f(x)+g(x),G(x)=f(x)-g(x).若對(duì)任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立.則(  )
A.F(x),G(x)都是增函數(shù)B.F(x),G(x)都是減函數(shù)
C.F(x)是增函數(shù),G(x)是減函數(shù)D.F(x)是減函數(shù),G(x)是增函數(shù)

分析 根據(jù)題意,不妨設(shè)x1>x2,f(x)單調(diào)遞增,可得出f(x1)-f(x2)>g(x1)-g(x2),且f(x1)-f(x2)>-g(x1)+g(x2),
根據(jù)單調(diào)性的定義證明即可.

解答 解:對(duì)任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立,
不妨設(shè)x1>x2,f(x)單調(diào)遞增,
∴f(x1)-f(x2)>g(x1)-g(x2),且f(x1)-f(x2)>-g(x1)+g(x2),
∴F(x1)=f(x1)+g(x1),F(xiàn)(x2)=f(x2)+g(x2),
∴F(x1)-F(x2)=f(x1)+g(x1)-f(x2)-g(x2
=f(x1)-f(x2)-(g(x2)-g(x1)>0,
∴F(x)為增函數(shù);同理可證G(x)為增函數(shù),
故選A.

點(diǎn)評(píng) 考查了對(duì)絕對(duì)值不等式的理解和利用定義證明函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.己知數(shù)列{an}滿足:an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≥{a}_{1}}\\{{a}_{n}+2,}&{{a}_{n}<{a}_{1}}\end{array}\right.$(n=1,2,…),若a3=3,則a1=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=loga(x-2)+4(a>0且a≠1),其圖象過定點(diǎn)P,角α的始邊與x軸的正半軸重合,頂點(diǎn)與坐標(biāo)原點(diǎn)重合,終邊過點(diǎn)P,則$\frac{sinα+2cosα}{sinα-cosα}$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)A(1,0)是雙曲線$\frac{{x}^{2}}{m}$$-\frac{{y}^{2}}{n}$=1上的點(diǎn),且雙曲線的焦點(diǎn)在x軸上.
(1)若n∈N*,雙曲線的離心率e$<\sqrt{3}$,求雙曲線的方程.
(2)過(1)中雙曲線的右焦點(diǎn)作直線l,該直線與雙曲線交于A,B兩點(diǎn),直線l與x軸上的夾角為a,若弦長(zhǎng)為|AB|=4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=l(a>0,b>0)的一條漸近線與直線2x+y-3=0垂直,則該雙曲線的離心率為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=log2x,x∈[$\frac{1}{8}$,4],則函數(shù)y=[f($\frac{{x}^{2}}{2}$)]×f(2x)的值域是[$-\frac{9}{8},2$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=-2,則|$\overrightarrow{a}$+$\overrightarrow$}=( 。
A.4B.5C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線x=m(m>1)與函數(shù)f(x)=logax,g(x)=logbx的圖象及x軸分別交于A,B,C三點(diǎn),若$\overrightarrow{AB}$=2$\overrightarrow{BC}$,則( 。
A.b=a2B.a=b2C.b=a3D.a=b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對(duì)于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.
某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.給定函數(shù)$f(x)=\frac{1}{3}{x}^{3}-\frac{1}{2}{x}^{2}+3x-\frac{5}{12}$,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算
$f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{2016}{2017})$=2016.

查看答案和解析>>

同步練習(xí)冊(cè)答案