如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,DC是∠ACB的平分線交AE于點F,交AB于D點.

(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.

(1) ∠ADF=45°; (2) AC∶BC=

解析試題分析:(1)由弦切角與角平分線,三角形的外角可得∠ADF=∠AFD,BE為直徑∠DAE=90°,則可得∠ADF=45°;(2)由△ACE∽△BCA得,在中可得比值.
解(1)∵AC為圓O的切線,∴∠B=∠EAC,
又知DC是∠ACB的平分線,∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,
即∠ADF=∠AFD,又因為BE為圓O的直徑,
∴∠DAE=90°,∴∠ADF= (180°-∠DAE)=45°.         5分
(2)∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
,又∵AB=AC,∠ADF=45°,
∴∠B=∠ACB=30°,
∴在中,=tan∠B=tan 30°=.        10分
考點:弦切角,三角形的相似的性質(zhì)與判定.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓內(nèi)兩弦的交點,過延長線上一點作圓的切線,為切點,已知.求證:

(Ⅰ)
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,EP交圓于E、C兩點,PD切圓于D,G為CE上一點且,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(1)求證:AB為圓的直徑;
(2)若AC=BD,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,EP交圓于E、C兩點,PD切圓于D,G為CE上一點且,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(1)求證:AB為圓的直徑;
(2)若AC=BD,求證:AB=ED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,,分別為的邊,上的點,且不與的頂點重合。已知的長為,AC的長為n,,的長是關(guān)于的方程的兩個根。

(1)證明:,,四點共圓;
(2)若,且,求,,所在圓的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,為圓的直徑,為垂直的一條弦,垂足為,弦.
(1)求證:、、四點共圓;
(2)若,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA為⊙O的切線,A為切點,PBC是過點O的割線,PA=10,PB=5。

求:(1)⊙O的半徑;(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如右圖,是⊙的直徑,延長線上的一點,過作⊙的切線,切點為,,若,則⊙的直徑         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在中,//,//,若

,則BD的長為        、AB的長為___________.

查看答案和解析>>

同步練習冊答案