(本小題滿分12分)已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組,按各組內(nèi)抽取的編號依次增加5進行系統(tǒng)抽樣.

(1)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;

(2)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;(溫馨提示:答題前請仔細(xì)閱讀卷首所給的公式)

(3)在(2)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.

 

【答案】

 (1)2,7,12,17,22,27,32,37,42,47.

(2)因為10名職工的平均體重為

 (81+70+73+76+78+79+62+65+67+59)=71

所以樣本方差為:

s2 (102+12+22+52+72+82+92+62+42+122)=52.

(3) P(A)=.

【解析】莖葉圖的莖是高位,葉是低位,所以本題中“莖是百位和十位”,葉是個位,從圖中分析出參與運算的數(shù)據(jù),代入相應(yīng)公式即可解答.從莖葉圖中提取數(shù)據(jù)是利用莖葉圖解決問題的關(guān)鍵.幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)P=N(A)/N求解.

(1)我們根據(jù)組內(nèi)抽按編取的編號依次增加5進行系統(tǒng)抽樣,第5組抽出的號碼為22,我們可以根據(jù)第5組抽出的號碼應(yīng)為4k+l(k為間隔,即5,l為起始編號),計算出起始編號l的值,然后根據(jù)系統(tǒng)抽樣的抽取方法不難寫出所有被抽出職工的號碼;

(2)該莖葉圖的莖為十位數(shù),葉為個位數(shù),由此不難列出10們職工的體重,然后代入方差公式,即可計算方差;

(3)由(2)的數(shù)據(jù),我們列出抽取兩名職工體重的所有基本事件個數(shù),及抽取的兩名職工體重都不輕于73公斤的基本事件數(shù),然后代入古典概型公式,即可求解

解:(1)由題意,第5組抽出的號碼為22.

因為2+5×(5-1)=22,

所以第1組抽出的號碼應(yīng)該為2,抽出的10名職工的號碼分別為

2,7,12,17,22,27,32,37,42,47.……4分

(2)因為10名職工的平均體重為

 (81+70+73+76+78+79+62+65+67+59)=71

所以樣本方差為:

s2 (102+12+22+52+72+82+92+62+42+122)=52.……8分

(3)從10名職工中隨機抽取兩名體重不輕于73公斤的職工,共有10種不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).

故所求概率為P(A)=.……12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案